期刊文献+

碳纳米管/纳米铁颗粒杂化结构的制备及形成机理 被引量:1

Synthesis and growth mechanism of CNTs/FeNP hybrid structures
下载PDF
导出
摘要 采用催化化学气相沉积法将由C包覆的纳米铁颗粒(FeNP)原位沉积于碳纳米管(CNTs)表面并形成不同形貌的碳纳米管/纳米铁颗粒(CNTs/FeNP)杂化结构。使用扫描电子显微镜、透射电子显微镜对制备的杂化结构进行微观形貌分析和结构表征。结果显示,纳米铁颗粒通过石墨片层结构与碳纳米管相连,具有良好的界面结合。当噻吩的添加量较低时,产物中碳纳米管的直径减小,产量增多。当噻吩的添加量超过0.5%时,可以得到CNTs/FeNP杂化结构。使用X射线能谱仪、X射线衍射仪分析了杂化结构的成分及其相对含量,结果显示体系中的Fe主要以α-Fe、γ-Fe和Fe3C的形式存在,并且Fe的含量随噻吩含量的增加不断增加。通过研究纳米铁颗粒的形成及其在碳纳米管表面的沉积,揭示了CNTs/FeNP杂化结构的形成机理。 Through in situ depositing of iron nano particles (FeNP) coating with carbon on the surface of carbon nanotubes (CNTs), different morphologies of CNTs/FeNP hybrid structures were prepared by catalytic chemi- cal vapor deposition method. The micro morphology and structure of hybrid structures were characterized using scanning electronic microscope and transmission electronic microscope. Results showed that iron nano particles were connected with CNTs through graphite sheet structures, with good interconnections. At low thiophene proportion, the diameter of CNTs decreased, and the amount of CNTs increased. When the thiophene propor- tion was higher than 0.5%, CNTs/FeNP hybrid structures were achieved. The components and relative pro- portions of hybrid structures were analyzed by X-ray energy dispersive spectroscopy and X-ray diffraction, it turns out that iron existed mainly on the form of a-Fe, y-Fe and Fe3C in the system; iron proportion increased with the increasing thiophene proportion. By studying the formation of iron nano particles and its deposition on the CNT surface, the formation mechanism of CNTs/FeNP hybrid structures was illustrated.
作者 李昊 李铁虎
出处 《功能材料》 EI CAS CSCD 北大核心 2012年第20期2839-2842,2847,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(51172184) 西北工业大学博士论文创新基金资助项目(CX200607)
关键词 碳纳米管 纳米铁颗粒 杂化结构 原位沉积 形成机理 carbon nanotubes iron nano particles hybrid structures in situ deposition formation mechanism
  • 相关文献

参考文献3

二级参考文献18

共引文献28

同被引文献14

  • 1曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257. 被引量:66
  • 2梁鹏,范明志,曹效鑫,黄霞,王诚.微生物燃料电池表观内阻的构成和测量[J].环境科学,2007,28(8):1894-1898. 被引量:118
  • 3Rulkens W. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options [J ]. Energy Fuels, 2008, 22 (1) : 9-15. 被引量:1
  • 4Logan B E. Feature article: Biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells[J]. Environmental Science & Technology, 2004, 38(9): 160-167. 被引量:1
  • 5He ziming, Liu Jing, Qiao Yan, et al. Architecture engineering of hierarchically porous ehitosan/vacuum- stripped graphene scaffold as bioanode for high performance microbial fuel cell [J]. American Chemieal Society, 2012, 12(9) : 4738-4741. 被引量:1
  • 6Avouris P, Hertel T, Mertel R, et al. Carbon nanotubes: Nanomeebanics, manipulation, and electronic devices [J]. Applied Surface Science, 1999, 141(3-4) : 201- 209. 被引量:1
  • 7Zou Yongjin, Xiang Cuili, Yang Lini, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material[J]. International Journal of Hydrogen Energy, 2008, 33 (18) : 4856-4862. 被引量:1
  • 8Qiao Yan, Li Changming, Bao Shujuan, et al. Carbon nanotubc/polyaniline composite as anode material for microbial fuel cell [J]. Journal of Power Sources, 2007, 170( 1 ) : 79-84. 被引量:1
  • 9Tushar S, Reddy A L M, Chandra T S, et al. Development of carbon nanotubes and nanofluids based microbial fuel cell [J]. International Journal of Hydrogen Energy, 2008, 33(22): 6749-6754. 被引量:1
  • 10Choi W B, Chae S, Bae E, et al. Carbon-nanotube- based nonvolatile memory with oxide-nitride-oxide film and nanoscale channel[J]. Applied Physics Letters, 2003, 82(2): 275-277. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部