期刊文献+

基于RS的森林蓄积量主成分回归估测 被引量:7

Estimation of Forest Volume by Principal Component Regression Based on RS
下载PDF
导出
摘要 通过对影响蓄积量的因子进行相关性分析,筛选出与蓄积量存在较好相关性的指标作为自变量。但其自变量间存在多重共线性,会对模型稳定性、预测精度产生影响。通过多元统计分析中的主成分分析法,构造出影响密云县森林蓄积量的主成分,然后与蓄积量进行回归,得到主成分回归,并与一般线性回归模型进行比较。结果表明:主成分线性模型在拟合度、模型适用性与预测精度上都优于一般线性模型。主成分回归模型的复相关系数为0.809,预测精度达到88.26%。 Indexes having a good correlation with stock volume were selected as the independent variables through the analysis of factors affecting stock volume. But there is multicollinearity between the variables which can affect the stability of the mo- del and the accuracy of prediction. The principal component affecting forest reserves in Miyun County were extracted by principal component analysis, and then a prineipal component regression model was obtained using the principal component as independent and forest reserves as dependent. The regression model was compared with the general linear regression model. Results show that the fitting degree, model applicability and prediction accuracy of the principal component regre- ssion model is superior to those of the general linear model. The multiple correlation of the principal component regression model is 0. 809, and the prediction accuracy is 88.26%.
机构地区 北京林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2012年第10期75-77,共3页 Journal of Northeast Forestry University
基金 国家"十一五"林业科技支撑计划课题(201145)
关键词 多重共线性 模型稳定性 预测精度 主成分回归 线性回归 Muhieollinearity Model stability Prediction accuracy Principal component regression Linear regre- ssion
  • 相关文献

参考文献7

二级参考文献30

共引文献45

同被引文献50

引证文献7

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部