期刊文献+

改进遗传算法智能组卷研究 被引量:7

Research of intelligent test paper generation based on improved genetic algorithm
下载PDF
导出
摘要 为了更有效解决智能组卷问题,针对应用型本科院校《自动控制原理》课程特点,建立了试题库并提出一种简化数学模型。同时,为了改善单纯遗传算法在组卷过程中局部搜索能力差与早熟收敛问题,在组合遗传算法基础上,对精英策略进行改进,提出一种新算法。仿真实验结果表明,与单纯粒子群算法、单纯遗传算法及其改进算法相比,新算法具有明显的优势,有效克服了未成熟收敛现象,提高了算法收敛精度与速度,具有寻优能力强、稳定性好等优点。 To settle the problem of intelligent test paper generation more effectively, according to the characteristics of automatic control theory in application-oriented school, a test database and mathematical model for intelligent test paper generation is set up. Meanwhile, a new algorithm is proposed based on the hybrid genetic algorithm, by developing elitist strategy, in order to o vercome simple genetic algorithm detects of worse local searching ability and premature convergence. The simulation and experi- ment results show that the novel algorithm is superior to simple particle swarm optimization, simple genetic algorithm and its im proved algorithm it can overcome premature phenomena and improve the convergence precision and speed, has advantages such as excellent optimization ability and good stability.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第10期3970-3974,共5页 Computer Engineering and Design
基金 江苏省高校自然科学研究基金项目(09KJD120005) 江苏省现代教育技术研究课题基金项目(2012-R-21672)
关键词 智能组卷 自动控制原理 数学模型 遗传算法 早熟收敛 精英策略 Key words: intelligent test paper generation automatic control theory mathematical model genetic algorithm premature con-vergencel elitist strategy
  • 相关文献

参考文献12

二级参考文献101

共引文献107

同被引文献49

  • 1陈宇,陈治平.启发式遗传算法组卷模型研究[J].计算技术与自动化,2006,25(1):50-52. 被引量:16
  • 2焦翠珍,戴文华.基于遗传算法的智能组卷方案研究[J].微电子学与计算机,2006,23(6):27-29. 被引量:14
  • 3王萌,金汉均,王晓荣.集合随机抽选法在智能组卷中的研究[J].计算机工程与设计,2006,27(19):3583-3585. 被引量:26
  • 4Tokui N, Iba H. Music composition with interactive evolutionary computation [ C ]//Proceedings of the 3rd International Conference on Generative Art, Milan ,2000:215-226. 被引量:1
  • 5Nia Xingliang, Lub Yao, Quanc Xiaojun, et al. User interest modeling and its application for question recommendation in user- interactive question answering systems [ J ]. Information Processing & Management, 2012,3 : 218- 233. 被引量:1
  • 6Issa,Taroub. How Web applications complement search engines [ C ]//2013 Palestinian International Conference on Information and Communication Technology, Singapore,2013 : 99 - 106. 被引量:1
  • 7Shen Wei, Wang Jianyong, Luo Ping, et al. Linking named entities in Tweets with knowledge base via user interest modeling [ C]//KDD'13 Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago ,2013:68-76. 被引量:1
  • 8Choi D H,Ahn B S. Eliciting customer preferences for products from navigation behavior on the web:a muhieriteria decision approach with implicit feedback [ J ]. IEEE Transactions on System, Man, and Cybernatics-Part A : Systems and Humans, 2009,39 (4) :880-889. 被引量:1
  • 9Huang C Y, Yang Y L, Tzeng G H, et al. 4G mobile phone consumer preference predictions by using the rough set theory and flow graphs [ J ]. Proceedings of Technology Management for Global Economic Growth,2010,1 : 10. 被引量:1
  • 10Su J W, Wang B W, Hsiao C Y, et al. Personalized rough-set-based recommendation by integrating multiple contents and col- laborative information [ J ]. Information Sciences,2010,180 : 113-131. 被引量:1

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部