期刊文献+

求解频率指派问题的Multi-Quadric算法

Multi-Quadric algorithm for solving frequency assignment problem
下载PDF
导出
摘要 为有效解决频率指派问题,提出了一种解决该问题的曲面拟合Multi-Quadric算法,算法将随机指派方案及其对应的干扰值作为多元散乱数据采样点,以此为基础进行多元散乱数据拟合,通过对拟合曲面极小值的寻找从而完成对频率指派问题的优化。优化结果可直接应用于实际工程,也可作为其它优化算法的初始解。算法在电台数量规模较大的应用中体现出良好的性能,算法结果作为蚁群、遗传算法的初始解,后继算法收敛速度明显提高。 The multi-quadric surface fitting algorithm is applied to solve the frequency assignment problem. The algorithm takes randomly assigned solutions and their corresponding interference values as scattered multiple sampling points, and multivariate scattered data is fitted based on them. The optimization of frequency assignment problems is completed by finding the minimum of fitted surface. The solution correspond to the minimum is optimal solution. Optimized results of the multi-quadric surface fitting algorithm is directly applied to actual engineering project, and also is used as the initial input of other optimization algo- rithms. Optimized results of the multi-quadric surface fitting algorithm is used as the initial solution, algorithms like ant colony algorithm and genetic algorithm reflects high efficiency in the application that have large-scale radio stations and convergence rate is improved significantly.
作者 杨化斌 林中
出处 《计算机工程与设计》 CSCD 北大核心 2012年第10期3853-3857,共5页 Computer Engineering and Design
基金 航空科学基金项目(20100796004)
关键词 频率指派 曲面拟合 多元插值 Multi—Quadric算法 单形调优法 Key words: frequency assignment surface fitting multivariate interpolation Muhi-Quadric algorithm simplex designs in op-timization
  • 相关文献

参考文献15

  • 1Chan J W T, Chin F Y L, Ye D, et al. Online frequency alloca- tion in cellular networks [C]. San Diego, CA, USA: 19th Symp On Parallel Algorithms and Architectures, 2007: 241-249. 被引量:1
  • 2Whitley L D, Sutton A M. Partial neighborhoods of elementary landscapes [C]. Montreal, Qufibec, Canada: Genetic and Evo- lutionary Computation Conference, 2009:381-388. 被引量:1
  • 3Chrobak M, Sgall J. Three results on frequency assignment in linear cellular networks [J]. Theoretical Computer Science, 2010, 411 (1): 131-137. 被引量:1
  • 4Driscoll T A, Heryudono A R H. Adaptive residual subsam- pling methods for radial basis function interpolation and colloca- tion problems [J]. Comput Math, 2007, 53 (6): 927-939. 被引量:1
  • 5Jung J H. A note on the Gibbs phenomenon with multi-quadric radial basis functions [J]. Applied Numerical Mathematics, 2007, 57 (2): 213-229. 被引量:1
  • 6Esmaeilbeigi M, Hosseini M M, Syed Tauseef Mohyud-Din. A new approach of the radial basis functions method for telegraph equations [J]. International Journal of the Physical Sciences, 2011, 6 (6): 1517-1527. 被引量:1
  • 7Adibi H, Es' haghi. Numerical solution for biharmonic equa- tion using multilevel radial basis functions and domain decompo- sition methods [J]. Applied Mathematics and Computation, 2007, 186 (1): 246-255. 被引量:1
  • 8Mohanty R K. New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations[J]. International Journal of Computer Mathematics, 2009, 86 (12): 2061-2071. 被引量:1
  • 9Natasha Flyer, Erik Lehto. Rotational transport on a sphere: Local node refinement with radial basis functions [J]. Journal of Computational Physics, 2010, 229 (1): 1954-1969. 被引量:1
  • 10Fornberg B, Flyer N, Hovde S, et al. Locality properties of radial basis function expansion coefficients for equispaced inter- polation [J]. IMA Journal of Numerical Analysis, 2008, 28 (1) : 121-142. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部