摘要
设{X_n,n≥1}是在S={1,2,…,N}中取值的随机变量序列,其分布为p(x_1,…,x_n),liminf[P(X_1,…,X_n)]^(1/n)与limsup[p(X_1,…,X_n)]^(1/n)称为AEP型极限。利用这些极限该文得到{X_n,n≥1}的若干强偏差定理,即一类用不等式表示的强极限定理。
Let {Xn, n 1} be a sequence of random variables taking values in S = {1,2 ,… N} with the joint distribution p(x1 ,…,xn). liminf[p)(X1,…,Xn]1/nand limsup[p(x1,…,xn]1/n are
called the AEP-like limits. In virtue of these limits, some strong deviation theorems, namely a class of strong limit theorems represented by inequalities are obtained.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1998年第4期444-450,共7页
Acta Mathematica Scientia
关键词
AEP型极限
强偏差定理
N值随机变量序列
AEP-like limit, Strong deviation theorem, Strong limit theeorem represented by inequalities, Asymptotic equipartition property.