期刊文献+

基于灰色模糊理论的“十二五”期间河南省物价趋势预测及影响因素研究 被引量:1

The Prediction and the Research on the Price Tendency and Influencing Factors in Henan Province during the Twelfth Five-year Plan Based on Grey Fuzzy Theory
下载PDF
导出
摘要 以灰色理论为基础,通过创建模型预测到河南省"十二五"期间居民消费价格指数的变动趋势表现为2011-2015年居民消费价格指数有升有降,总体呈现平稳上升状态。同时,运用Eviews6.0软件对影响CPI变动的原因进行了研究,结果表明,作为居民消费价格指数重要组成部分的食品、居住类商品价格的上涨是影响居民消费价格指数的主要因素,翘尾因素和虚拟财产是次要因素。 Commodity price is of essential importance in relating to national welfare and the people's livelihood. In the past 2010, the state has considered price regulation as an important task to overtake. As the core of "Central China Economic District", Henan province has played a very important role in stabilizing the prices. Based on grey fuzzy theory and by means of creating the model, this paper predicts that the movement of consumer price index in Henan Province during the twelfth five-year plan will keep a steady increase in the overall state. Additionally, this paper indicates that the rising price of food, housing commodity, which is an important part of consumer price index, is the key factor, and that carryover effect and virtual property are secondary factors. Because of the macro-control of our state and government, the consumer price index in Henan province presents a steady and modest increase.
作者 张端端
出处 《常熟理工学院学报》 2012年第7期62-66,共5页 Journal of Changshu Institute of Technology
基金 河南省教育厅2011年度人文社会科学研究项目"中原经济区视角下高职大学生失学率预警研究"(2011-GH-018)
关键词 灰色模糊理论 十二五 物价 预测 影响因素 grey fuzzy theory the twelfth five-year plan price prediction influencing factors
  • 相关文献

参考文献3

二级参考文献9

共引文献40

同被引文献34

  • 1李少民,吴韧强.世界石油价格的长期趋势预测[J].经济纵横,2007(5):110-111. 被引量:2
  • 2陈光华.人工神经网络在证券价格预测中的应用[J].计算机仿真,2007,24(10):244-248. 被引量:10
  • 3ML.Shih,B.W.Huang,Nan-Hsing Chiu,C.Chiu,W.Y.Hu.Farm price prediction using case-based reasoning approach-A case of broiler industry in Taiwan,Computers and Electronics in Agriculture 66 (2009)70-75. 被引量:1
  • 4Paresh Date,Rogemar Marmon,Anton Tenyakov.Filtering and forecasting commodity futures prices under an HMM framework,Energy Economics xxx (2013) xxx-xxx. 被引量:1
  • 5Ali Ghaffari,Samaneh Zare.A novel algorithm for prediction of crude oil price variation based on soft computing,Energy Economics 31 (2009)531-536. 被引量:1
  • 6Ying Fan,Qiang Liang,Yi-Ming Wei.A generalized pattem matching approach for multi-step prediction of crude oil price,Energy Economics 30 (2008) 889-904. 被引量:1
  • 7Lean Yu,Shouyang Wang,Kin Keung Lai.Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm,Energy Economics 30 (2008) 2623-2635. 被引量:1
  • 8Tai-Liang Chen,Ching-Hsue Cheng,Hia Jong Tesh.Fuzzy time-series based on Fibonacci sequence for stock price forecasting,Physica A 380 (2007)377-390. 被引量:1
  • 9Joanna Janczura,Stefan Trück,Rafa? Weron,Rodney C.Wolff.Identifying spikes and seasonal components in electricity spot price data:A guide to robust modeling,Energy Economics 38(2013)96-110. 被引量:1
  • 10Tang Mingming,Zhang Jinliang.A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices,Journal of Economics and Business 64 (2012) 275-286. 被引量:1

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部