期刊文献+

基于超像素的快速MRF红外行人图像分割算法 被引量:4

Fast Infrared Pedestrian Image Segment Algorithm Using MRF Based on Super-pixel
下载PDF
导出
摘要 针对红外图像中行人目标分割时容易受环境干扰的问题,提出一种基于马尔可夫随机场的红外行人分割方法。为了解决计算最优解时优化算法收敛速度慢的问题,采用simple linear iterative clustering算法将红外图像预分割为超像素块。以像素块作为马尔可夫随机场的分割单位。像素块的颜色信息由该像素块内所有像素的平均灰度值表示。根据马尔可夫随机场与图像信息之间的关系计算图像的局部先验空间结构信息,采用ICM计算后验能量函数的最小化解。实验结果表明,改进分割算法较好的抑制了小的噪声点,获得了比较理想的分割结果,对于360×240的红外图像,采用超像素对图像进行预分割可以将分割速度提高10倍以上。 Because the segment of pedestrian in infrared image is vulnerable to the environment,this paper presented an infrared pedestrian image segment algorithm based on markov random field.For the purpose of advancing the convergence speed,this algorithm adopts the simple linear iterative clustering algorithm to pre-segment the image into several super-pixels.And these super-pixels are the process units of the markov random field.The color information of the super-pixel is the average gray level of the pixels in it.The local priori distribution of the image is described according to the relationship between markov random field and image,and ICM algorithm is employed to optimize the posteriori energy function to get the optimal segmentation.The experimental results show that the algorithm in this paper can restrain the tiny noise better,so that the segment is perfect relatively.And the pre-segment of image can increase the computation speed more than 10 times for infrared images of size 360×240.
出处 《计算机仿真》 CSCD 北大核心 2012年第10期26-29,404,共5页 Computer Simulation
基金 国家自然科学基金(61170185) 辽宁省科技攻关计划项目(2011217002)
关键词 红外图像 行人 图像分割 超像素 马尔可夫随机场 Infrared image Pedestrian Image segment Super-pixel MRF
  • 相关文献

参考文献9

二级参考文献76

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:359
  • 2Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision, 2006, 70(2): 109-131. 被引量:1
  • 3Han S D, Tao W B, Wang D S, Tai X C, Wu X L. Image segmentation based on grabcut framework integrating multiscale nonlinear structure tensor. IEEE Transactions on Image Processing, 2009, 18(10): 2289-2302. 被引量:1
  • 4Delong A, Boykov Y. A scalable graph-cut algorithm for N-D grids. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8. 被引量:1
  • 5Han S D, Tao W B, Wu X L, Tai X C, Wang T J. Fast image segmentation based on multilevel banded closed-form method. Pattern Recognition Letters, 2010, 31(3): 216-225. 被引量:1
  • 6Li Y, Sun J, Tang C K, Shum H Y. Lazy snapping. ACM Transactions on Graphics, 2004, 23(3): 303--308. 被引量:1
  • 7Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619. 被引量:1
  • 8Christoudias C M, Georgescu B, Meer P. Synergism in low level vision. In: Proceedings of the 16th International Conference on Pattern Recognition. Washington D.C., USA: IEEE, 2002. 150-155. 被引量:1
  • 9Meet P, Georgescu B. Edge detection with embedded confidence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(12): 1351-1365. 被引量:1
  • 10Wang Z Z, Vemuri B C. DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Transactions on Medical Imaging, 2005, 24(10): 1267-1277. 被引量:1

共引文献252

同被引文献52

  • 1王雅琴,高华.自然环境下水果图像分割与定位研究[J].计算机工程,2004,30(13):128-129. 被引量:22
  • 2欧阳庆.不均匀光照下车牌图像二值化研究[J].武汉大学学报(工学版),2006,39(4):143-146. 被引量:30
  • 3余锦华,汪源源,施心陵.基于空间邻域信息的二维模糊聚类图像分割[J].光电工程,2007,34(4):114-119. 被引量:20
  • 4李景福,赵进辉.基于阈值的彩色农业图像分割方法研究[J].安徽农业科学,2007,35(28):8869-8870. 被引量:5
  • 5RAM K,SIVASWAMY J. Multi-space clustering for segmentation of exudates in retinal color photographs[C]// 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis: IEEE Press, 2009 : 1437-1440. 被引量:1
  • 6NAGY B, ANTAL B, HAJDU A. Image database clustering to improve microaneurysm detection in color fundus im- ages[C]//25th International Symposium on Computer-Based Medical Systems. Rome: IEEE Press, 2012:1-6. 被引量:1
  • 7RANAMUKA N G, MEEGAMA R G N. Detection of hard exudates from diabetic retinopathy images using fuzzy logic[J]. IET Image Processing, 2013,7(2) : 121-130. 被引量:1
  • 8GIANCARE~ L, MERIAUDEAU F, KARNOWSKI T P, et al. Automatic retina exudates segmentation without a manually labelled training set[C] ff International Symposium on Biomedical Imaging. Chicago: IEEE Press, 2011.. 1396-1400. 被引量:1
  • 9ACHANTA R, SHAJI A,SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282. 被引量:1
  • 10BANDYOPADHYAY S K,PAUL T U. Segmentation of brain tumour from MRI image-analysis of K-means and DBSCAN clustering[J]. International Journal of Research in Engineering and Science,2013,1(1):48-57. 被引量:1

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部