期刊文献+

基于IPSO的模糊神经网络优化及交通流量预测 被引量:4

Fuzzy Neural Networks Based on IPSO for Traffic Flow Prediction
下载PDF
导出
摘要 在基于模糊神经网络的交通流量预测中,神经网络的各节点参数优化是最关键的。采用粒子群算法优化模糊神经网络的参数。针对粒子群算法易于陷入局部最优的缺点,提出一种改进的粒子群优化算法,并将改进的算法用于路口交通流量预测。仿真结果表明,该算法的收敛速度和预测精度优于传统粒子群算法、BP算法,提高了交通流量预测的精度和速度。 In a traffic flow prediction based fuzzy neural network,the optimization of the parameters of the nodes is very critical.An improved particle swarm optimization method was used to optimize the fuzzy neural network parameters to improve the precision and speed of vehicle prediction by fuzzy neural networks.Simulation results show that the accuracyof method is faster and accuracy is more accurate than PSO and BP algorithm,and the fuzzy neural network prediction model based on IPSO is an effective method for traffic flow prediction.
出处 《计算机科学》 CSCD 北大核心 2012年第10期190-192,230,共4页 Computer Science
基金 国家自然科学基金项目(60903159) 中央高校基本科研业务费专项资金项目(N100604012)资助
关键词 模糊神经网络 粒子群优化 交通流量预测 Fuzzy neural network Particle swarm optimization Traffic flow prediction
  • 相关文献

参考文献10

二级参考文献51

共引文献412

同被引文献28

  • 1万伦来.西方证券投资组合理论的发展趋势综述[J].安徽大学学报(哲学社会科学版),2005,29(1):84-88. 被引量:10
  • 2张建科,刘三阳,张晓清.改进的粒子群算法[J].计算机工程与设计,2007,28(17):4215-4216. 被引量:32
  • 3Kennedy J, Eberhart R. Particle Swarm Optimization[A].Proceedings of the Ieee Inter national Conferece on Neural Net works[C]. 1995. 被引量:1
  • 4Markowitz H. Foundation of Portfolio Theory [J]. Journal of Finance, 1991(2). 被引量:1
  • 5Shi Y, Eberhart R. Fuzzy Adaptive Swarm Optimization[A]. The IEEE Congress on Evolutionary Computation[C]. San Francisco, USA: IEEE, 2001. 被引量:1
  • 6Elattar E E, Goulermas J, Wu Q H. Electric load forecasting based on locally weighted support vector regression [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part C : Appli- cations and Reviews ,2010,40(4) :438-447. 被引量:1
  • 7Ma J,Theiler J, Perkins S. Accurate on-line support vector re- gression [ J ]. Neural Computation ,2003,15 ( 11 ) :2683-2703. 被引量:1
  • 8Sauer T, Yorke J A, Casdagli M. Embedology [ J]. Journal of- Statistical Physics, 1991,65 ( 3 ) :579-616. 被引量:1
  • 9Freeway Performance Measurement System (PEMS), version 7.0[ EB/OL]. 2006. http://pems, dot. ca. gov/. 被引量:1
  • 10Sun H, Liu H X, Xiao H, et al. Use of local linear regression model for short-term traffic forecasting[ J]. Transportation Re- search Record,2003,1836 ( 1 ) : 143-150. 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部