期刊文献+

基于DR-tree的室内移动对象索引研究 被引量:6

Indoor Moving Objects Index Research Based on DR-tree
下载PDF
导出
摘要 对于移动对象历史轨迹索引,现有的方案绝大多数都基于室外空间,难以直接应用于室内空间中;同时,未将对象本身作为一个独立的维度加以索引,无法提供高效的对象轨迹查询方式。对此,提出了一个室内环境下的移动对象索引结构DR-tree来对移动数据的位置、时间、对象三个维度进行索引,并将位置维与对象维解耦,将三维索引转换为两个二维索引,同时给出查询优化方案。实验结果表明,与现有的室内环境下的索引方案RTR-tree相比,该结构不仅能够提供高效的时空查询,而且还能提供高效的对象轨迹查询。 For the index of historical trajectories of moving objects,most of the schemes are based on outdoor space,which are hard to be directly applied to indoor space.Moreover,the object itself is not indexed as an independent dimension and the efficiency of the queries based on objects is quite low.Thus,this paper proposed an index structure DR-tree(Dual R-tree) which can index three dimensions,such as the localization,the object and the time.This scheme can convert the three-dimension index into two two-dimension index by decoupling the location and object dimension,and provide query optimization method.The experimental results show that compared with RTR-tree,DR-tree,the scheme can not only support the efficient spatiotemporal query,but also provide the trajectory query based on objects.
出处 《计算机科学》 CSCD 北大核心 2012年第10期177-181,共5页 Computer Science
基金 国家自然科学基金(61173045) 湖北省自然科学基金(2007ABA307) 中央高校基本科研业务费(2010MS112)资助
关键词 移动对象索引 室内空间 DR-tree 对象轨迹查询 Moving objects index Indoor space DR-tree Object trajectory query
  • 相关文献

参考文献15

  • 1周傲英,杨彬,金澈清,马强.基于位置的服务:架构与进展[J].计算机学报,2011,34(7):1155-1171. 被引量:171
  • 2郑字,谢幸.基于用户轨迹挖掘的智能位置服务[J].中国计算机学会通讯,2011,6(6):8-9. 被引量:1
  • 3赵亮,景宁.移动对象数据库关键技术[J].中国计算机学会通讯,2011,7(5):52-60. 被引量:1
  • 4Pfoser D, Jensen C S, Theodoridis Y. Novel Approaches in Query Processing for Moving Object Trajectories[C]//Proceedings of the Intl. Conf. on Very Large Data Bases(VLDB). 2000 : 395-406. 被引量:1
  • 5Chakka V P, Everspaugh A, Patel J M. Indexing Large Trajectory Data Sets with SETI[C]//First Biennial Conf. on Innovative Data Systems Research (CIDR). 2003:164-175. 被引量:1
  • 6Frentzos E. Indexing objects moving on fixed networks[C]// Proceedings of the 8th Intl. Syrnp. On Spatial and Temporal Da- tabases (SSTD). 2003 : 289-305. 被引量:1
  • 7宋广军,郝忠孝,王丽杰.一种基于受限网络的移动对象索引[J].计算机科学,2009,36(12):138-141. 被引量:4
  • 8Dean J, Ghernawat S. Mapreduce: Simplified data processing on large clusters [J]. Communications of the ACM, 2008, 51 (1): 107-113. 被引量:1
  • 9Yang B, Ma Q, Qian W, et al. TRUSTER: Trajectory data pro- cessing on clusters[C] //Proceedings of the 14tb International Conference on Database Systems for Advanced Applications. 2009 : 768-771. 被引量:1
  • 10Ma Q, Yang B, Qian W, et al. Query Processing of Massive Tra- jectory Data based on MapReduce[C]//Proceedings of the first international workshop on Cloud data management. 2009:9-16. 被引量:1

二级参考文献111

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2陈继东,孟小峰.Indexing Future Trajectories of Moving Objects in a Constrained Network[J].Journal of Computer Science & Technology,2007,22(2):245-251. 被引量:12
  • 3陈继东,胡志智,孟小峰,王凌.一种基于城市交通网络的移动对象全时态索引[J].计算机研究与发展,2007,44(6):1008-1014. 被引量:8
  • 4Nagel K, Scheekenberg M. A cellular Automation Model for Freeway Traffic[J]. J. Phys. I. France, 1992(2) : 2221-2229. 被引量:1
  • 5Biham, et al. Self- oranization and a Dynamical Transition in Flow Models[J]. Pys Rev A. , 1992,46 : 6124-6127. 被引量:1
  • 6Schadschneider A, Chowdhury D, et al. A New Cellular Automation Model for City Traffic[C] //Germany: Traffic and Granular Flow'99. 2000. 被引量:1
  • 7Dupuis A, Chopard B. Parallel traffic simulation on Geneva using cellular automata[J]. Parallel and Distributed Computing Practices(PDCP), 1998,1(3) : 79-92. 被引量:1
  • 8Pei Soo-chang, Horng Ji-hwei. Fitting Digital Curve Using Circular Arcs[J]. Pattern Recognition, 1995,28(1):107-116. 被引量:1
  • 9Yang B, Lu H, Jensen C S. Scalable continuous range monitoring of moving objects in symbolic indoor space//Proeeedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:671-680. 被引量:1
  • 10Wolfson O, Sistla P A, Chamberlain S, Yesha Y. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 1999, 7(3): 257-387. 被引量:1

共引文献173

同被引文献163

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部