期刊文献+

基于条件随机场的目标跟踪算法研究 被引量:1

Research on Object Detection Based on CRF
下载PDF
导出
摘要 在目标跟踪过程中,图像匹配技术是跟踪至关重要的环节,直接影响跟踪的效果。针对图像匹配算法中传统块匹配的搜索框和匹配准则问题提出了相应的改进。首先,采用并行粒子滤波算法对图像匹配中搜索框的位置和大小进行改进。其次,采用基于时空域信息的条件随机场模型以及CRF最大似然系数,对目前主流的依赖颜色信息的Bhattacharyya系数匹配准则进行改进。实验结果表明该算法不仅在匹配速度上有所提升,而且大幅减少了对目标颜色和形状的依赖,在匹配精度上也有了大幅提升,能更好的处理目标和背景颜色相似等复杂问题。 Image matching technology is the vital section of object tracking which is directly affected by the result of image matching.This paper proposes improved algorithms on search region and match principle in block matching process.Firstly, based on CRF model and CRF maximum likelihood parameter,a new algorithm of image matching is presented to improve the traditional Bhattacharyya parameter principle.Secondly,applying the distributed particle filter algorithm,the position and range of searching region is improved.
出处 《工业控制计算机》 2012年第9期87-89,共3页 Industrial Control Computer
关键词 块匹配 条件随机场(CRF) BHATTACHARYYA系数 并行粒子滤波(DPF) CRF,block match,image match,Bhattacharyya parameter,DPF
  • 相关文献

参考文献3

  • 1D. Comaniciu, V. Ramesh, P. Meer. Real-time tracking of non-rigid objects using mean shift [C]. Proc. IEEE Conf on Computer Vision and Pattern Recognition (CVPR) , 2000,2: 142-149. 被引量:1
  • 2A. Elgammal, R. Duraiswami, L. Davis. Probability tracking in joint feature-spatial spaces[C] Proc. IEEE Conf. on Computer Vision and Pattern Recognition(CVPR), 2003.781-788. 被引量:1
  • 3马瑞恒,盛晓红.无线传感网络中分布式粒子滤波的目标追踪算法[J].解放军理工大学学报(自然科学版),2006,7(5):421-425. 被引量:7

二级参考文献15

  • 1CHEN J C,YAO K,HUDSON R E.Source localization and beaming[J].IEEE,Signal Processing Magazine,2002,3:30-39. 被引量:1
  • 2YAO K,ESTRIN D,HU Yuhen.Editorial[J].J EURASIP Journal on Applied Signal Processing 2003,4:319-320. 被引量:1
  • 3SHENG Xiaohong,HU Yuhen.Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks[J].IEEE Trans on Signal Processing,2005,11(53):44-53. 被引量:1
  • 4LI Dan,HU Yuhen.Energy based collaborative source localization using acoustic micro-sensor array[J].J EUROSIP Applied Signal Processing,2003,(4):321-337. 被引量:1
  • 5CHEN J C,HUDSON R E,YAO K.A maximum likelihood parametric approach to source localization[C].Newyork:ICASSP (2001),2001. 被引量:1
  • 6CHEN J C,HUDSON R E,YAO K.Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field signal processing[J].IEEE Trans on Signal Processing,2002,8(50):1843-1854. 被引量:1
  • 7PERTILA P E,PIRINNEN T W.Comparison of three post processing methods for acoustic localization[C].Phoenix:SPIE,2003. 被引量:1
  • 8DOUCET A,FREITAS N,GORDON N.Sequential monte carlo methods in practice[M].Newyork:Springer-Verlag,2001. 被引量:1
  • 9DJURIC M P.Particle filtering[J].IEEE Signal Processing Magazine,2003,9(20):19-38. 被引量:1
  • 10ARULAMPALAM M S,MASKELL S.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans On Signal Processing,2002,2(50):176-188. 被引量:1

共引文献6

同被引文献13

  • 1OJHA S, SAKHARE S. Image processing techniques for object tracking in video surveillance: A survey [C]. IEEE International Conference on Pervasive Computing, 2015 : 1-6. 被引量:1
  • 2ANDREAS E, BASTIAN L. Robust muhiperson tracking from a mobile platform [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(10) : 1831-1846. 被引量:1
  • 3LIU T, YUAN Z J. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367. 被引量:1
  • 4COLEMAN G B, ANDREWS H C. Image segmentation by clustering [ J]. Proceedings of the IEEE, 1979, 67(5) :773-785. 被引量:1
  • 5ANDREAS E, BASTIAN L. Robust multiperson tracking from a mobile platform[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(10) : 1831-1846. 被引量:1
  • 6LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]. IJCAI, 1981: 674-679. 被引量:1
  • 7VISHWANATHAN S V N, SCHRAUDOLPH N N, SCHMI'DT M W, et al. Accelerated training of conditional random fields methods[C]. Proceedings Conference on Machine 969-976. with stochastic gradient of the 23rd International Learning, ACM, 2006. 被引量:1
  • 8颜佳,吴敏渊,陈淑珍,张青林.应用Mean Shift和分块的抗遮挡跟踪[J].光学精密工程,2010,18(6):1413-1419. 被引量:28
  • 9李劲菊,朱青,王耀南.一种复杂背景下运动目标检测与跟踪方法[J].仪器仪表学报,2010,31(10):2242-2247. 被引量:73
  • 10孙斌,黄神治.移动背景下运动目标检测与跟踪技术研究[J].电子测量与仪器学报,2011,25(3):206-210. 被引量:45

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部