期刊文献+

基于格子Boltzmann方程的大涡模拟对湍流时空关联性的研究 被引量:2

Time-Space Correlations of Isotropic Turbulence by Lattice-Boltzmann-Based Large Eddy Simulation
下载PDF
导出
摘要 将格子Boltzmann方程和大涡模拟(LBE-LES)相结合,提出适应于格子Boltzmann方法(LBM)的涡黏性亚格子尺度模型,开展均匀各向同性湍流时空关联性的研究.采用D3Q19格式计算湍流的三维能谱、湍动能耗散率和其它高阶统计量,与实验和直接数值模拟结果的比较表明,该模型比传统涡黏模型有明显改进.考察了不同亚格子模型预测湍流频率波数能量谱的能力,结果表明,尺度涡产生的横扫作用是造成小尺度涡时间去关联的主要因素,不同波数的频率能量谱之间有一定的相似性,横扫速度是描述湍流频率波数能量谱的特征量. Using combined method of large-eddy simulations with lattice Boltzmann (LES-LBM), an eddy-viscosity sub-grid scale (SGS) model has been developed, which is suitable for the LES- LBM framework to study space-time correlation of homogeneous isotropic turbulence. The lattice Boltzmann algorithm of 19-velocity D3Q19 lattice mode was implemented to calculate time evolution of the kinetic energy, the decay exponents of the dissipation rate, the instantaneous energy spectra and the high-order statistical quantities. Comparing with the evaluations of the model coefficients as a function of sub-grid activity obtained from direct numerical simulation (DNS) and other experiments, the obtained results from LES-LBM based new SGS model exhibit more satisfactory behavior than that of the classical one. Further, the abilities of several SGS models to predict the frequency-wave number energy spectra in turbulent flows were examined. It is found that the temporal de-correlation of smaller scales is determined by random sweeping motion of larger scales, the normalized frequency energy spectra of different wave number exhibit a common similarity to a certain extent and the sweeping velocity dominates the frequency-wave number energy spectra.
机构地区 上海大学
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2012年第8期876-880,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(10972132) 创新团队发展计划资助项目(IRT0844)
关键词 格子BOLTZMANN方法 均匀各向同性湍流 大涡模拟 亚格子模型 lattice Boltzmann method~ isotropic turbulence~ large eddy simulation~ sub-gridscale model
  • 相关文献

参考文献15

  • 1Wang M, Freund J B, Lele S K. Computational prediction of flow-generated sound[J]. Annual Review of Fluid Mechanics, 2006,38:483 - 512. 被引量:1
  • 2Lighthill M J. On sound generated aerodynamically, Part I: general theory[C]// Proceedings of the Royal Society of London. London:[s. n.], 1952, A 211: 564 - 587. 被引量:1
  • 3Proudman I. The generation of sound by isotropic turbulence[C]// Proceedings of the Royal Society of London. London:[s.n.], 1952, A214:119-152. 被引量:1
  • 4Smagorinsky J. General circulation experiments with the primitive equations [ J ]. Monthly Weather Review, 1963,91:99 - 165. 被引量:1
  • 5Chen H, Chen S, Matthaeus H W. Recovery of the Navier-Stokes equation using a lattice Boltzmann method [J]. Physical Review E, 1992, A 45:5339- 5342. 被引量:1
  • 6Marie S, Ricot D, Sagaut P. Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics[J]. Journal of Computional Physics, 2009,228 : 1056 - 1067. 被引量:1
  • 7Dong Y H, Sagaut P, Marie S. Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method[J]. Physics of Fluids, 2008, 20,035104 - 1- 11. 被引量:1
  • 8Qian Y, d'Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equations [J]. Europhysics Letters, 1992,17:479-484. 被引量:1
  • 9Meyers J, Sagaut P. On the model coefficients for the standard and the variational multi-scale Smogorisky model[J]. Journal of Fluid Mechanics, 2006, 569: 287 - 319. 被引量:1
  • 10Pope S B. Turbulent flows [M]. Cambridge: Cambridge University Press, 2000. 被引量:1

同被引文献17

  • 1杨帆,刘树红,唐学林,吴玉林.格子Boltzmann亚格子模型的研究[J].工程热物理学报,2004,25(S1):43-46. 被引量:5
  • 2王广超,廖国勇.后台阶流动的非均匀格子Boltzmann方法模拟[J].计算机与现代化,2007(1):6-8. 被引量:1
  • 3Qian Y H, d'Humieres D, Lallemand P. Lattice BGK models for the Navier-Stokes equation[J]. Euro phys I~tt., 1992(17): 479-484. 被引量:1
  • 4Qian Y, Sueei S, Orszag S. Recent advances in lattice Boltzmann computing[J]. Ann. Rev. Comp. Phys., 1995, 3: 195- 242. 被引量:1
  • 5Hou S, Sterling J, Chen S, Doolen G D. A lattice Boltzmann subgrid model for high Reynolds number flows[M]. In: Lawniczak AT, Kapra 1R, editors. Pattern formation and lattice gas automata. Fields Institute Communications 6, Provi- dence, RI: AMS, 1996: 66-151. 被引量:1
  • 6Guan H, Wu C J. Large-eddy simulations of turbulent cavity flows with the dynamic SGS model and LBM algorithm[J]. Transactions of Nanjing Univ. of Aeronautics & Astronautics, 2001, IS(Suppl.): 60-63. 被引量:1
  • 7Yu H, Girimaji S S, Luo L S. DNS and LES of decaying isotropic tttrbulence with and without frame rotation using Lattice Bohzmann methods[J]. J Comput. Phys., 2005, 209: 599-615. 被引量:1
  • 8Burattini P, Lavoie P, Agrawal A, Djenidi L, Antonia R A. Power law of decaying homogeneous isotropic turbulence at low Reynolds number[J]. Physical Review E, 2006,73, 066301. 被引量:1
  • 9Meyers J, Sagaut P. On the model coefficients for the standard and the variational multi-scale Smagorinsky model[J]. J Fluid Mech, 2006, 569: 287-319. 被引量:1
  • 10Meryers J, Sagaut P. Evaluation of Smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows [J]. Physics of Fluids, 2007, 19(9): 1-12. 被引量:1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部