期刊文献+

The Fresnel-Weyl complementary transformation

The Fresnel-Weyl complementary transformation
下载PDF
导出
摘要 Based on the newly developed coherent-entangled state representation,we propose the so-called Fresnel-Weyl complementary transformation operator.The new operator plays the roles of both Fresnel transformation(for(a 1 a 2)/√ 2) and the Weyl transformation(for(a 1 + a 2)/√ 2).Physically,(a 1 a 2)/√ 2 and(a 1 + a 2)/√ 2 could be a symmetric beamsplitter's two output fields for the incoming fields a 1 and a 2.We show that the two transformations are concisely expressed in the coherent-entangled state representation as a projective operator in the integration form. Based on the newly developed coherent-entangled state representation,we propose the so-called Fresnel-Weyl complementary transformation operator.The new operator plays the roles of both Fresnel transformation(for(a 1 a 2)/√ 2) and the Weyl transformation(for(a 1 + a 2)/√ 2).Physically,(a 1 a 2)/√ 2 and(a 1 + a 2)/√ 2 could be a symmetric beamsplitter's two output fields for the incoming fields a 1 and a 2.We show that the two transformations are concisely expressed in the coherent-entangled state representation as a projective operator in the integration form.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期70-72,共3页 中国物理B(英文版)
基金 Project supported by the Doctoral Scientific Research Startup Fund of Anhui University,China (Grant No. 33190059) the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113401120004) the Open Funds from National Laboratory for Infrared Physics,Chinese Academy of Sciences (Grant No. 201117)
关键词 coherent-entangled state representation Fresnel-Weyl complementary transformation beamsplitter coherent-entangled state representation Fresnel-Weyl complementary transformation beamsplitter
  • 相关文献

参考文献18

  • 1Dirac P A 1930 The Principles of Quantum Mechanics (Oxford: Clarendon Press). 被引量:1
  • 2Cohen-Tannoudji C, Diu B and Laboe F 1991 Quantum Mechanics 2nd edn. (New York: Wiley). 被引量:1
  • 3Schleich W P 2001 Quantum Optics in Phase Space (Birlin: Wiley-VCH). 被引量:1
  • 4Vogel K and Risken H 1989 Phys. Rev. A 40 2847. 被引量:1
  • 5Smithey D T, Beck M and Raymer M G 1993 Phys. Rev. Lett. 70 1244. 被引量:1
  • 6Fan H Y and Lu H L 2006 Opt. Commun. 258 51. 被引量:1
  • 7Fan H Y 2003 Commun. Theor. Phys. 40 589. 被引量:1
  • 8Fan H Y and Hu L Y 2008 Chin. Phys. B 17 1640. 被引量:1
  • 9Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831. 被引量:1
  • 10Xie C M, Fan H Y and Wan S L 2010 Chin. Phys. B 19 064207. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部