期刊文献+

The Blow-Up Phenomena for the Camassa-Holm Equation with a Zero Order Dissipation 被引量:1

The Blow-Up Phenomena for the Camassa-Holm Equation with a Zero Order Dissipation
原文传递
导出
摘要 In this paper, we study the Cauchy problem of the Camassa-Holm equation with a zero order dissipation. We establish local well-posedness and investigate the blow-up phenomena for the equation.
出处 《Journal of Partial Differential Equations》 2012年第3期208-219,共12页 偏微分方程(英文版)
  • 相关文献

参考文献29

  • 1Fokas A. and Fuchssteiner B., Symplectic structures, their Backlund transformation and hereditary symmetries. Physica D, 4 (1981), 47-66. 被引量:1
  • 2Camassa R. and Holm D., An integrable shallow water equation with peaked solitons. Phys. Rev. Left., 71 (1993), 1661-1664. 被引量:1
  • 3Camassa R., Holm D., and Hyman J., A new integrable shallow water equation. Adv. Appl. Mech., 31 (1994), 1-33. 被引量:1
  • 4Beals R., Sattinger D., and Szmigielski J., Multipeakons and a theorem of Stieltjes. Inverse Problems, 15 (1999), 1-4. 被引量:1
  • 5Constantin A., On the scattering problem for the Camassa-Holm equation. Proc. Roy. Soc. London A, 457 (2001), 953-970. 被引量:1
  • 6Constantin A. "and Strauss W. A., Stability of peakons. Comm. Pure Appl. Math., 53 (2000), 603-610. 被引量:1
  • 7Constantin A. and Strauss W. A., Stability of the Camassa-Holm solitons. J. Nonlinear Science, 12 (2002), 415-422. 被引量:1
  • 8Constantin A., The trajectories of particles in Stokes waves. Invent. Math., 166 (2006), 523-535. 被引量:1
  • 9Constantin A. and Escher J., Particle trajectories in solitary water waves. Bull. Amer. Math. Soc., 44 (2007), 423-431. 被引量:1
  • 10Fuchssteiner B., Some tricks from the symmetry-toolbox for nonlinear equations: General- izations of the Camassa-Holm equation. Physica D, 95 (1996), 229-243. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部