The Blow-Up Phenomena for the Camassa-Holm Equation with a Zero Order Dissipation
被引量:1
The Blow-Up Phenomena for the Camassa-Holm Equation with a Zero Order Dissipation
摘要
In this paper, we study the Cauchy problem of the Camassa-Holm equation with a zero order dissipation. We establish local well-posedness and investigate the blow-up phenomena for the equation.
参考文献29
-
1Fokas A. and Fuchssteiner B., Symplectic structures, their Backlund transformation and hereditary symmetries. Physica D, 4 (1981), 47-66. 被引量:1
-
2Camassa R. and Holm D., An integrable shallow water equation with peaked solitons. Phys. Rev. Left., 71 (1993), 1661-1664. 被引量:1
-
3Camassa R., Holm D., and Hyman J., A new integrable shallow water equation. Adv. Appl. Mech., 31 (1994), 1-33. 被引量:1
-
4Beals R., Sattinger D., and Szmigielski J., Multipeakons and a theorem of Stieltjes. Inverse Problems, 15 (1999), 1-4. 被引量:1
-
5Constantin A., On the scattering problem for the Camassa-Holm equation. Proc. Roy. Soc. London A, 457 (2001), 953-970. 被引量:1
-
6Constantin A. "and Strauss W. A., Stability of peakons. Comm. Pure Appl. Math., 53 (2000), 603-610. 被引量:1
-
7Constantin A. and Strauss W. A., Stability of the Camassa-Holm solitons. J. Nonlinear Science, 12 (2002), 415-422. 被引量:1
-
8Constantin A., The trajectories of particles in Stokes waves. Invent. Math., 166 (2006), 523-535. 被引量:1
-
9Constantin A. and Escher J., Particle trajectories in solitary water waves. Bull. Amer. Math. Soc., 44 (2007), 423-431. 被引量:1
-
10Fuchssteiner B., Some tricks from the symmetry-toolbox for nonlinear equations: General- izations of the Camassa-Holm equation. Physica D, 95 (1996), 229-243. 被引量:1
-
1LIU Yongqin,WANG Weike.On the Blow-up Phenomena of Cauchy Problem for the Camassa-Holm Equation[J].Wuhan University Journal of Natural Sciences,2006,11(3):451-455.
-
2黄晔辉,姚玉芹,曾云波.On Camassa-Holm Equation with Self-Consistent Sources and Its Solutions[J].Communications in Theoretical Physics,2010(3):403-412.
-
3傅仰耿,刘正荣,唐昊.NON-UNIFORM DEPENDENCE ON INITIAL DATA FOR THE MODIFIED CAMASSA-HOLM EQUATION ON THE LINE[J].Acta Mathematica Scientia,2014,34(6):1781-1794. 被引量:3
-
4WU Shuyin.Global Weak Solutions for the Weakly Dissipative Camassa-Holm Equation[J].Journal of Partial Differential Equations,2011,24(2):165-179.
-
5YANG Pei,CHEN Yong,LI Zhi-Bin.An Approach for Solving Short-Wave Models for Camassa-Holm Equation and Degasperis-Procesi Equation[J].Communications in Theoretical Physics,2008,50(9):583-586.
-
6付一平.The Time Periodic Solution for Camassa-Holm Equation[J].数学进展,2003,32(3):377-378.
-
7Quan-di Wang Min-ying Tang.New Explicit Periodic Wave Solutions and their Limits for Modified form of Camassa-holm Equation[J].Acta Mathematicae Applicatae Sinica,2010,26(3):513-524.
-
8Xiaozhou LI,Yan XU,Yishen LI.Investigation of Multi-soliton,Multi-cuspon Solutions to the Camassa-Holm Equation and Their Interaction[J].Chinese Annals of Mathematics,Series B,2012,33(2):225-246.
-
9屈长征,付英.On a New Three-Component Camassa Holm Equation with Peakons[J].Communications in Theoretical Physics,2010(2):223-230. 被引量:2
-
10罗琳,夏宝强,曹玉峰.Peakon Solutions to Supersymmetric Camassa-Holm Equation and Degasperis-Procesi Equation[J].Communications in Theoretical Physics,2013,59(1):73-79. 被引量:1