期刊文献+

A Derivative Recovery Spectral Volume Model for the Analysis of Constituents Transport in One-Dimensional Flows

A Derivative Recovery Spectral Volume Model for the Analysis of Constituents Transport in One-Dimensional Flows
下载PDF
导出
摘要 The treatment of advective fluxes in high-order finite volume models is well established, but this is not the case for diffusive fluxes, due to the conflict between the discontinuous representation of the solution and the continuous structure of analytic solutions. In this paper, a derivative reconstruction approach is proposed in the context of spectral volume methods, for the approximation of diffusive fluxes, aiming at the reconciliation of this conflict. Two different reconstructions are used for advective and diffusive fluxes: the advective reconstruction makes use of the information contained in a spectral cell, and allows the formation of discontinuities at the spectral cells boundaries; the diffusive reconstruction makes use of the information contained in contiguous spectral cells, imposing the continuity of the reconstruction at the spectral cells boundaries. The method is demonstrated by a number of numerical experiments, including the solution of shallow-water equations, complemented with the advective-diffusive transport equation of a conservative substance, showing the promising abilities of the numerical scheme proposed.
出处 《Journal of Mathematics and System Science》 2012年第5期334-340,共7页 数学和系统科学(英文版)
关键词 Spectral volume method derivative recovery method advection-diffusion problems C-property well-balanced. 体积模型 导数光谱 一维流 扩散通量 运输 成分 不连续性 对流扩散
  • 相关文献

参考文献15

  • 1Y. Sun, Z.J. Wang, Formulations and analysis of the spectral volume method for the diffusion equation, Communications in Numerical Methods in Engineering 20 (2004) 927-937. 被引量:1
  • 2R. Kannan, Z.J. Wang, A study of viscous flux formulations for a p-multigrid spectral volume navier stokes solver, Journal of Scientific Computing 41 (2009) 165-199. 被引量:1
  • 3L. Cozzolino, D. Pianese, High-order finite volume modelling of one-dimensional flows, in: R.M.L. Ferreira, E.C.T.L, Alves, J.G.A.B. Leal, A.H. Cardoso (Eds.), Proceedings of River Flow 2006, International Conference on Fluvial Hydraulics, Taylor & Francis Group, London, 2006, pp. 493-502. 被引量:1
  • 4L. Cozzolino, R.D Morte, G.D Giudice, A. Palumbo, D. Pianese, A well-balanced spectral volume scheme with the wetting-drying property for the shallow-water equations, Journal of Hydroinformatics 14 (2012) 745-760. 被引量:1
  • 5B. van Leer, S. Nomura, Discontinuous Galerkin for diffusion, in: 17th AIAA-CFD Conference, Toronto, Ontario Canada, 2005, pp. 2005-5108. 被引量:1
  • 6M. van Raalte, B. van Leer, Bilinear forms for the recovery-based discontinuous Galerkin method for the diffusion, Communications in Computational Physics 5 (2009) 683-693. 被引量:1
  • 7H. Liu, J. Yan, The direct discontinuous Galerkin (DDG) methods for diffusion problems, SIAM Journal on Numerical Analysis 47 (2009) 675-698. 被引量:1
  • 8Z.J. Wang, Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation, Journal of Computational Physics 178 (2002) 210-251. 被引量:1
  • 9C.A.J. Fletcher, Computational Techniques for Fluid Dynamics 1, Springer-Verlag, Kassel, Germany, 1996. 被引量:1
  • 10R. Eymard, T. GallouEt, R. Herbin, Finite Volume Methods, in Handbook for Numerical Analysis, Vol. VII., Ph. Ciarlet and J.L. (Eds.), North Holland, 2000. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部