期刊文献+

Cause型捕食模型的稳定性与分支分析 被引量:4

Stability and Bifurcation Analysis on Gause-Type Predator-Prey Model
下载PDF
导出
摘要 用多项式理论分析Gause型捕食模型特征方程特征根的分布规律,给出了共存平衡点稳定及产生Hopf分支的条件.结果表明,该模型存在一个Hopf分支点τ=τ0,使得当0<τ<τ0时,平衡点是局部渐近稳定的;当τ>τ0时,在平衡点附近出现一个稳定的周期解. We used the polynomial theorem to analyze the distribution of the roots of the associated characteris- tic equation for a Gause-type predator-prey model. A group of conditions of stability and the existence of Hopf bifurcation were obtained at the co-existing equilibrium. The result indicates that in the model, there exists a Hopf bifurcation point T = To. The co-existing equilibrium is local asymptotically stable when 0 〈T 〈 To and a stable periodic solution appears near the equilibrium ,point when T〉 To.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第5期940-944,共5页 Journal of Jilin University:Science Edition
基金 黑龙江省普通高校青年学术骨干支持项目(批准号:11251G0011)
关键词 Gause型食物链 时滞 稳定性 HOPF分支 Gause-type model delay stability Hopf bifurcation
  • 相关文献

参考文献11

二级参考文献34

  • 1CHATTOPADHYAY J, SARKAR R R, GHOSAL G. Removal of infected prey prevent limit cycle oscillations in an infected prey-predator system-a mathematical study[J]. Ecological Modelling, 2002,156 : 113 - 121. 被引量:1
  • 2CUSHING J M. Integrodifferential equations and delay models in population dynamics[ M]. Heidelberg: Spring, 1977. 被引量:1
  • 3GOPALASAY K. Stability and Oscillations in delay-differential equations of population dynamics[ M ]. Dordrecht: Kluwer, 1992. 被引量:1
  • 4KUANG Y. Delay-differential equations with applications in population dynamics[ M ]. New York: Academic Press, 1993. 被引量:1
  • 5MACDONALD N. Time delays in Biological models [ M ]. Heidelberg: Spring, 1978. 被引量:1
  • 6KAR T K, ASHIM B. Stability and bifurcation of a prey-predator model with time delay[J]. C R Biologies, 2009,332:642 -651. 被引量:1
  • 7FREEDMAN H I, RAO V S H. The trade-off between mutual interference and time lags in predator-prey System[J]. Bull Math Biol, 1982,45: 991 - 1004. 被引量:1
  • 8RUAN A S, WEI J. On the zeros of transcendental functions with applications to stability of delayed differential equations with two delays [ J ]. Dynamics of Continuous, Discrete and Impulsive Systems, 2003,10 : 863 - 874. 被引量:1
  • 9FREEDMAN H I,WALTMAN P. Mathematic analysis of some three species food chain models[ J ]. Math Biosci, 1978, 33:257 -276. 被引量:1
  • 10WONLYUL K, KIMUN R. A qualitative study on general Gause-type predator-prey models with non-monotonic functional response [ J ]. Nonlinear Analysis: Real World Applications, 2009, 10:2558 - 2573. 被引量:1

共引文献18

同被引文献16

  • 1刘振杰,徐亚兰,钮佩琨.一类具有稀疏效应的捕食者-食饵系统的周期解[J].哈尔滨师范大学自然科学学报,2006,22(6):4-6. 被引量:1
  • 2欧伯群,秦发金.基于比率的离散型Leslie系统正周期解的存在性[J].哈尔滨师范大学自然科学学报,2006,22(6):7-11. 被引量:1
  • 3Sunita Gakkhar, Anuraj Singh. Complex Dynamics in a Prey Predator System with Multiple Delays [ J ]. Communications in Nonlinear Science and Numerical Simulation,2012,17(2) :914-929. 被引量:1
  • 4Zhu Yanling,Wang K. Existence and Global Attractivity of Positive Periodic Solutions for a Predator-prey Model with Modified Leslie-Gower Holling-type II Schemes [ J ]. J Math Anal Appl, 2011,384 (2) :400408. 被引量:1
  • 5Tapan Saha, Charugopal Chakrabarti. Stochastic Analysis of Prey-predator Model with Stage Structure for Prey [ J ]. J Appl Math Comput ,2011,35 ( 1/2 ) : 195-209. 被引量:1
  • 6B D Hassard, N D Kazarinoff, Y H Wan. Theory and Applications of Hopf Bifurcation [ M ]. Cambridge : Cambridge University Press, 1981. 被引量:1
  • 7Freedman H I,Waltman P.Mathematical analysis of some three-species food-chain models[J].Mathematical Biosciences,1977,3 (33). 被引量:1
  • 8Ginoux J M,Rossetto B,Jamet J L.Chaos in a three-dimensional Volterra-Gause model of predator-prey type.2005,5(15). 被引量:1
  • 9Hastings A,Powell T.Ecology.Chaos in three-species food chain[J].International Journal of Bifurcation and Chaos,1991,3(72). 被引量:1
  • 10Freedman H I,Waltman P. Mathematical analysis of some three-species food-chain models[J].Mathematical Biosciences,1977,(33):257-276. 被引量:1

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部