期刊文献+

最小化预测残差的图像序列压缩感知 被引量:5

Image sequence compressed sensing by minimizing prediction errors
下载PDF
导出
摘要 提出了一种最小化预测残差的图像序列压缩感知算法以实现高速相机输出图像的实时压缩。首先,在编码端仅使用映射矩阵对原始输出图像进行压缩,将压缩得到的观测向量通过信道传输到解码端。接着,在解码端对相邻帧进行运动估计和运动补偿,得到一幅待重建图像的预测图像,利用压缩感知算法对原始图像和预测图像之间存在的预测残差图像进行重建。最后,用迭代的方法优化预测残差图像的重建结果,直到连续两次的重建结果之差小于设定阈值,从而获得重建的原始图像。采用DALSA公司的CR-GEN0-H6400相机进行的实验表明,该算法可以实现1 000frame/s图像的实时压缩,并且图像重建质量比独立地重建每张图像至少提高了2~6dB,有效地实现了对高速相机输出图像的实时压缩与高质量重建。 An image sequence compressed sensing algorithm by minimizing prediction errors was pro- posed for high speed camera image compression in real-time. First, an original image was compressed only by a projection matrix on the encoder side. The observed vector obtained by compressing was transferred to the decoder through a channel. Then, motion estimation and motion compensation were performed on correlated images on the decoder side, and a prediction image was generated in this way. Furthermore, the prediction error image which is the difference between original image and prediction image was reconstructed by compressed sensing. Finally, the reconstruction of prediction error image was improved by an iterative procedure, until the difference between two consecutive reconstruction results was smaller than a predetermined threshold. Therefore, the original image was reconstructed by the prediction error image. Experiments by CR-GEN0-H6400 camera from DALSA indicate that the proposd algorithm can compress 1 000 ffame/s images in real-time, and image reconstruction result is im- proved by 2--6 dB at least as compared with that of independent reconstruction. The proposed algorithm can compress high speed camera images in real-time, and can reconstruct the images in high quality.
作者 石文轩 李婕
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第9期2095-2102,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61072135)
关键词 压缩感知 实时压缩 图像重建 预测残差 compressed sensing compress in real-time image reconstruction prediction error
  • 相关文献

参考文献20

  • 1WATKINSON J. The MPEG Handbook: MPEG- 1, MPEG-2, MPEG-4 [M]. Boston, MA- Focal Press,2004. 被引量:1
  • 2WIEGAND T, SULLIVAN G J, BJONTEGAARDG, et al: Overview of the H. 264/AVC video cod- ing standard [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13 (7): 560-576. 被引量:1
  • 3李桂菊,刘刚,梁静秋.H.264快速运动估计算法的改进[J].光学精密工程,2010,18(11):2489-2496. 被引量:12
  • 4GIROD B, AARON A M, RANE S, etal: Distribu- ted video coding [J]. IEEE-Special Issue Advances video coding and Delivery, 2005, 93 (1) : 71-83. 被引量:1
  • 5LIU L, LI Z, DELP E J. Efficient and low-com- plexity surveillance video compression using back- ward-channel aware Wyner-Ziv video coding [J].IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(4) :453-465. 被引量:1
  • 6MARPE D, GEORGE V, CYCON H L, et al: Performance evaluation of Motion-JPEG2000 in comparison with H. 264/AVC operated in pure in- tra coding mode [J].Wavelet Applications in In- dustrial Processing, 2003, 5266 - 127-137. 被引量:1
  • 7卿粼波,何小海,张志亮.分布式视频编码中虚拟信道模型的动态估计[J].光学精密工程,2009,17(4):923-929. 被引量:4
  • 8SLEPIAN D, WOLF J. Noiseless coding of correla ted information source [J]. IEEE Transactions on Information Theory, 1973, 19(4): 471-480. 被引量:1
  • 9WYNER A, ZIV J. The rate-distortion function for source coding with side information at decoder [J]. IEEE Transactions on Information Theory, 1976, 22(1) : 1-10. 被引量:1
  • 10CANDES E J, ROMBERG J, TAO T. Robust un- certainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1

二级参考文献182

  • 1梁燕,刘文耀.基于起点预测的自适应交叉-准菱形运动估计算法[J].光学精密工程,2005,13(2):237-246. 被引量:7
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3SLEPIAN S, WOLF J K. Noiseless coding of correlated information sources[J]. IEEE Transaction on Information Theory, 1973, IT- 19 :471-480. 被引量:1
  • 4WYNER A, ZIV J. The rate-distortion function for source coding with side information at the decoder [J].IEEE Transaction on Information Theory, 1976,IT-22:1-10. 被引量:1
  • 5AARON A, ZHANG R, GIROD B. Wyner-Ziv coding of motion video[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2002 : 3-5. 被引量:1
  • 6AARON A, RANE S, SETTON E, et al: Transform-domain Wyner-Ziv codec for video[C]. Proceedings of the IT&S/ SPIE Conference on Visual Communication, Image Processing ( VCIP ), San Jose, 2004. 被引量:1
  • 7BRITES C, ASCENSO J, PEREIRA F. Improve transform domain Wyner-Ziv video coding performance[C]. IEEE International Conference on A coustics, Speech and Signal Processing, 2006: 525-528. 被引量:1
  • 8GUO X , LU Y, WU F, etal.. Distributed video coding using wavelet [C]. IEEE International Symposium on Circuits and Systems, 2006 : 5427- 5430. 被引量:1
  • 9CHIEN W J, KARAM L J. Distributed video coding with 3-D recursive search block matching[C].IEEE International Symposium on Circuits and Systems, 2006. 被引量:1
  • 10SSCENSO J, BRITES C, PEREIRA F. Motion compensated refinement for low complexity pixel based distributed video coding[J]. IEEE International Conference on Advanced Video and SignalBased Surveillance, 2005 : 593- 598. 被引量:1

共引文献355

同被引文献86

  • 1MOHR A E, RISKIN E A, LADNER R E. Une- qual loss protection: graceful degradation of image quality over packet erasure channels through for- ward error correction [J]. IEEE Journal on Select- ed Areas in Communications, 2000, 18 (6) : 819 828. 被引量:1
  • 2CANDES E, ROMBERG J, TAO T. Robust un- certainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans on Information Theory, 2006, 52 (2): 489-509. 被引量:1
  • 3DONOHO D L. Compressed sensing [J']. IEEE Trans on Information Theory, 2006, 52 (4): 1289-1306. 被引量:1
  • 4WILLETT R, MARCIA R, NICHOLS J. Com- pressed sensing for practical optical imaging sys terns: a tutorial [J]. Optical Engineering, 2011, 50(7) 1-13. 被引量:1
  • 5FRIBOULET D, LIEBGOTT H, PROST R. Com- pressive sensing for raw RF signals reconstruction in ultrasound [C]. IEEE International Ultrasonics Symposium, 2010: 367-370. 被引量:1
  • 6ZHANG J, ZHAO D B, ZHAO C, etal: Com- pressed sensing recovery via collaborative sparsity [C]. Proc. of IEEE Data Compression Confer- ence, 2012: 287-296. 被引量:1
  • 7WANG L J, WU X L, SHI G M. Multiple descrip-tion video coding against both erasure and bit errors by compressive sensing EC. Visual Communication and Image Processing, 2011 1-4. 被引量:1
  • 8GOYAL V K, FLETCHER A K, RANGAN S. Compressive sampling and Iossy compression [J]. IEEE Signal Process. Mag. , 2008, 25 (2) : 48- 56. 被引量:1
  • 9BOUFOUNOS P, BARANIUK R. Quantization of sparse representations EC. Proc. Data Compres- sion Conf. , 2007: 378-387. 被引量:1
  • 10WU X L, DONG W S, ZHANG X J, et al: Model-assisted adaptive recovery of compressed sensing with imaging application [J]. IEEE Trans On Image Processing, 2012, 21(2) 451- 458. 被引量:1

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部