期刊文献+

基于Kalman与SIFT的车辆跟踪算法 被引量:1

Vehicle Tracking Algorithm Based on Kalman and SIFT
下载PDF
导出
摘要 车辆跟踪是智能交通系统中的一项关键技术。文章在研究现有的车辆跟踪算法基础上,提出了一种基于卡尔曼(Kalman)与尺度不变特征变换(Scale invariant feature transform,SIFT)的车辆跟踪算法。通过将车辆的外接矩形信息转化为Kalman滤波参数,对车辆运动进行建模,结合SIFT特征匹配能够有效地解决车辆遮挡问题。实验结果表明,该方法能够对运动车辆实现稳定的跟踪,并且能够有效地解决车辆遮挡问题。 Vehicle tracking is one of the key technologies in Intelligent Transportation System. In this pa per, a new vehicle tracking algorithm based on Kalman and SIFT is proposed after researching of the existing algorithm. Vehicle moving model is made by converting the parameters of the contourrectangles to the parame ters of Kalman filter. Objects sheltering can be effectively resolved through matching SIFT feature. The experi ments demonstrate that vehicles can be tracked stably, and objects sheltering can be effectively resolved.
出处 《信息化研究》 2012年第4期14-17,49,共5页 INFORMATIZATION RESEARCH
基金 国家自然科学基金项目(No:60872073 No:60975017 No:51075068) 教育部博士点专项基金(No:20110092130004) 江苏省高校自然科学基金资助项目(NO:10KJB510005)
关键词 车辆跟踪 卡尔曼(Kalman)滤波 尺度不变特征变换(SIFT) vehicle tracking Kalman filter scale invariant feature transform (,SIFT)
  • 相关文献

参考文献7

  • 1Staufer C, Grimson W E L. Learning patterns of activity using real-time tracking[J]. IEEE Transactions on pattern analysis & machine intelligence, 2000,22 (8) .. 747 - 757. 被引量:1
  • 2Jang D S,Choi H I. Active models for tracking moving ob- iects[J]. Pattern recognition, 2000,33(7) : 1135 - 1146. 被引量:1
  • 3Shoichi A, Takashi M, Naokazu Y, et al. Real-time tracking of multiple moving object contours in a moving camera im- age sequence[J]. IEICE trans inf & syst, 2000,83(7) : 102 - 112. 被引量:1
  • 4Kalman R E. A new approach to linear filtering and predic- tion problems[J]. Transaction of the ASMF:journal of has-ic engineering, 1960,82 ( 1 ) : 35 - 45. 被引量:1
  • 5Lowe D G. Object recognition from local scale-invariant fea- tures[C]//Proceedings of the international conference on computer vision. Corfu, Greece.. [s. n. ],1999..1150- 1157. 被引量:1
  • 6Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004.60(2):91 - 110. 被引量:1
  • 7李红波,陈安荣.一种基于SIFT的遮挡目标跟踪算法[J].重庆邮电大学学报(自然科学版),2011,23(2):231-236. 被引量:7

二级参考文献17

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 3李晓亮.基于小波变换和数学形态学的运动物体检测[J].南昌大学学报(理科版),2006,30(6):624-626. 被引量:3
  • 4HARITAOGULU I, HARWOOD D, DAVIS L. W4: real- time surveillance of people and their activities [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) : 809-830. 被引量:1
  • 5NEBOJSA Jojic, BRENDAN J. Frey Learning Flexible Sprites in Video Layers[ C ]// Proceedings of IEEE Con- ference on Computer Vision and Pattern Recognition, Kauai, HI, USA:IEEE Press 2001:1199-1206. 被引量:1
  • 6DEMPSTER Arthur, LAIRD Nan, RUBIN Donald. Maxi- mum likelihood from incomplete data via the EM algo- rithm[J]. Journal of the Royal Statistical Society, Series B,1977,39( 1 ) : 1-38. 被引量:1
  • 7ZHOU Y, TAO H. A Background Layer Model for Object Tracking Through Occlusion [ EB/OL ]. [ 2003-04-18 ]. http ://www. cvl. iis. u-tokyo, ac. jp/iccv2003/. 被引量:1
  • 8BRADSKI G R. Real time face and object tracking as a component of a perceptual user interface [ C ]//Proceed- ings of 4th IEEE workshop on Applications of Computer Vision(WACV' 98), Los Alamitos, California, USA: Princeton, New Jersey, 1998:214-219. 被引量:1
  • 9LOWED G. Distinctive image features from scale invari- ant keypoints [ J ]. International Journal of Computer Vi- sion, 2004, 60(2) :91-110. 被引量:1
  • 10FISHCHLER M A. Random sample consensus: a para- digm for model fitting with application to image analysis and automated cartography [J]. Communication Associa- tion Machine, 1981,24(6) :381-395. 被引量:1

共引文献6

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部