期刊文献+

任意非齐次马氏信源关于广义随机选择系统的广义Shannon-Mcmillan定理

A class of Shannon-Mcmillan theorems for nonhomogeneous Markov information source on random selection systems
下载PDF
导出
摘要 文中通过构造相容分布和非负上鞅的方法,研究非齐次马氏信源关于广义赌博系统的一类广义Shannon-Mcmillan定理.并由此得出已有的非齐次马氏信源、无记忆信源的一类Shannon-Mcmillan定理,推广了前人的结果. In this paper, a class of generalized Shannon-McMillan theorems for the nonhomogeneous Markov information source on the generalized gambling system are discussed by constructing the consistent distribution and nonnegative supermartingales. As corollaries, some Shannon-Mcmillan theorems for the nonhomogeneous Markov information source, non-momery information source are obtained.
出处 《江苏科技大学学报(自然科学版)》 CAS 2012年第4期406-410,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(11072107)
关键词 非齐次马氏信源 SHANNON-MCMILLAN定理 广义赌博系统 相对熵密度 the nonhomogeneous Markov information source Shannon-Mcmillan theorem generalized gambling system relative entropy density
  • 相关文献

参考文献12

  • 1Shannon C E. A mathematical theory of communication [J]. Bell System Technical Journal, 1948,27:379 - 423. 被引量:1
  • 2Mcmillan B. The basic theorem of information theory[ J]. The Annals of Mathematical Statistics, 1953,24 : 196 - 219. 被引量:1
  • 3Breiman L. The individual ergodic theorem of information theory [ J ]. The Annals of Mathematical Statistics, 1957, 28:809-811. 被引量:1
  • 4Chung K L. A note on the ergodic theorem of information theory [ J ]. The Annals of Mathematical Statistics, 1961, 32(2) : 612 -614. 被引量:1
  • 51 Kieffer J C. A simple proof of the Moy-Perez generaliza- tion of the Shannon-Mcmillan theorem [ J ]. Pacific Jour- nal of Mathematics, 1974,51 ( 1 ) :203 - 204. 被引量:1
  • 6Algoet P H, Cover T M. A sandwich proof of the Shan- non-Mcmillan theorem [ J ]. The Annals of Probability, 1988,16(2) : 899 -909. 被引量:1
  • 7刘文,杨卫国.关于Shannon-Mcmillan定理的若干研究(Ⅱ)[J].数学物理学报(A辑),1997,17(2):176-183. 被引量:2
  • 8Liu Wen, Yang Weiguo. An extension of Shannon-Memil- lan theorem and some limit properties for nonhomogeneous Markov chains [ J ]. Stochastic Processes and their Applica- tions, 1996,61 : 129 - 145. 被引量:1
  • 9王康康,杨卫国.任意信源的一类Shannon-Mcmillan逼近定理[J].Journal of Mathematical Research and Exposition,2007,27(4):719-727. 被引量:6
  • 10王康康.任意信源关于赌博系统的一类Shannon-McMillan定理[J].纯粹数学与应用数学,2008,24(2):353-357. 被引量:5

二级参考文献18

  • 1刘文,数学物理学报,1994年,3期,337页 被引量:1
  • 2Chung K L,Ann Math Stat,1961年,32卷,612页 被引量:1
  • 3LIU Wen, YANG Wei-guo. An extension of Shannon-McMillan theorem and some limit propertles for nonhomogeneous Markov chains [J]. Stochastic Process. Appl., 1996, 61(1): 129-145. 被引量:1
  • 4CHUNG K L. A Course in Probability Theory [M]. Academic Press, New York, 1974. 被引量:1
  • 5SHANNON C. A mathematical Theory of Communication [M]. Bell System Tech J., 1948, 27: 379-423. 被引量:1
  • 6MCMILLAN B. The Basic Theorem of information theory [J]. Ann. Math. Statist., 1953, 24: 196-219. 被引量:1
  • 7BREIMAN L. The individual ergodic theorem of information theory [J]. Ann. Math. Statist., 1957, 28: 809-811. 被引量:1
  • 8CHUNG K L. The ergodic theorem of information theory [J]. Ann. Math. Statist, 1961, 32: 612-614. 被引量:1
  • 9DOOB J L. Stochastic Process [M]. New York, Wiley, 1953. 被引量:1
  • 10GRAY R M. Entropy and Information Theory [M]. New York, Springer, 1990. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部