期刊文献+

梯度投影法求解压缩感知信号重构问题 被引量:8

Problem of Signal Reconstruction of Compressive Sensing Solved by Gradient Projection
原文传递
导出
摘要 将结合Barzilai-Borwein步长和非单调线搜索的梯度投影法用于压缩感知信号重构.分析了Barzilai-Borwein步长计算方法,结合其特点给出了非单调线搜索方法,为降低线搜索对算法性能的影响,引入了自适应的策略,最后给出了算法收敛性分析.实验结果表明,该算法能很好地重构不同稀疏度的信号,且在相同条件下,计算效率优于经典的基追踪法、正交匹配追踪和其他梯度投影法. A gradient projection method combining Barzilai-Borwein stepsize and nonmonotone line search is proposed and applied to signal reconstruction in compressive sensing. The computation of Barzilai-Bor- wein stepsize is analyzed, A corresponding nonmonotone line search method is introduced. To reduce in- fluence of line search, an adaptive nonmonotone line search is designed. Convergence analysis of the al- gorithm is given. Experiment shows that the proposed algorithm can get good performances of signal re- construction with different sparsity, seems better than Basis Pursuit, Orthogonal Matching Pursuit and other gradient projection algorithms.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2012年第4期112-115,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国防科技重点实验室基金项目(9140c610301080c6106 9140c6001070801) 航空科学基金项目(20101996009)
关键词 压缩感知 信号重构 梯度投影 Barzilai-Borwein步长 非单调线搜索 compressive sensing signal reconstruction gradient projection Barzilai-Borwein stepsize nonmonotone line search
  • 相关文献

参考文献10

  • 1Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate information [ J ]. Commu- nications on Pure and Applied Mathematics, 2006, 59(8) : 1207-1233. 被引量:1
  • 2Candes E, Romberg J, Tao T. Robust uncertainty princi- ples: Exact signal reconstruction form highly incomplete frequency information [ J ]. IEEE Trans on Information Theory, 2006, 52 (2) : 489-509. 被引量:1
  • 3Donoho D. Compressed sensing[ J]. IEEE Trans on In- formation Theory, 2006, 52 (4) : 1289-1306. 被引量:1
  • 4Kim S, Koh K, Lustig M, et al. A method for large-scale ll-regularized least squares problems with applications in signal processing and statistic [ J]. IEEE Journal of Se- lected Topics in Signal Processing, 2007, 1(4): 606- 617. 被引量:1
  • 5Candes E, Romberg J. ll-MAGIC: Recovery of sparse signal via convex programming[ EB/OL]. (2009-06-05) [2011-03-10]. http://www-stat, stanford, edu/-can- des/11 magic/. 被引量:1
  • 6Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to com- pressed sensing and other inverse problem [ J ]. IEEE Journal of Selected Topics Signal Processing, 2007, 1(4) : 586-597. 被引量:1
  • 7Dai Yuhong, Fletcher R. Projected barzilai-borwein methods for large-scale box-constrained quadratic pro- gramming[J]. Numerical Math, 2005, 100(1) : 21-47. 被引量:1
  • 8Barzilai J, Borwein J. Two point step size gradient meth- ods [ J ]. IMA Journal of Numerical Analysis, 1988, 8(1): 141-148. 被引量:1
  • 9Grippo L, Lampariello F, Lucidi S. A nonmonotone line search technique for Newton's method [ J]. SIAM J Nu- merical Analysis, 1986, 23(4) : 707-716. 被引量:1
  • 10Dai Yuhong. An adaptive two-point stepsize gradient al- gorithm [ J ]. Numerical Algorithms, 2001, 27(4) : 377 -385. 被引量:1

同被引文献80

  • 1欧阳森,任震.谐波源检测与识别方法综述[J].电网技术,2006,30(S1):151-156. 被引量:10
  • 2李强,周京阳,于尔铿,刘树春,王磊.基于相量量测的电力系统线性状态估计[J].电力系统自动化,2005,29(18):24-28. 被引量:32
  • 3罗毅,赵冬梅.电力系统PMU最优配置数字规划算法[J].电力系统自动化,2006,30(9):20-24. 被引量:37
  • 4祝永坚,陈钱,王晓璇.基于ICCD的微光成像建模与仿真[J].南京理工大学学报,2007,31(1):101-104. 被引量:4
  • 5崔征.基于压缩感知的无线传感器网络数据压缩算法的研究[D].哈尔滨工业大学硕士学位论文,2012. 被引量:1
  • 6CANDES E J, TAO T. Near optimal signal recovery from random projections: universal encoding strategies [ J]. IEEE Transactions on Information Theory, 2006, S2(12) : 5406 - 5425. 被引量:1
  • 7FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient pro- jection for sparse reconstruction: application to compressed sensing and other inverse problems [ J]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007, 1(4) : 586 -598. 被引量:1
  • 8BIKKI J, DOSS B. Sparse image reconstruction using nonlinear ill- tering for compressed sensing [ J]. International Journal of Engineer- ing Research and Technology, 2012, 1(4) : 1 -6. 被引量:1
  • 9DAI Q, SHA W. The physics of compressive sensing and the gradi- ent-based recovery algorithms [ EB/OL]. [ 2009- 07- 04]. http:// arxiv, org./abs/0906. 1487. 被引量:1
  • 10BREDIES K, KUNISCH K, POCK T. Total generalized variation [J]. SIAM Journal on Imaging Sciences, 2010, 3(3) : 492 -526. 被引量:1

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部