期刊文献+

基于信号投影能量特征的脑电意识动态分类 被引量:5

Dynamic Motor Imagery Classification with Signal Power Projection based Feature
下载PDF
导出
摘要 针对脑电意识任务动态分类问题,本文提出了一种基于投影能量的特征提取方法来提取反映不同思维状态的脑电特征,并结合信息累积后验贝叶斯方法进行分类以提高脑-机接口系统的分类正确率。该方法通过使两类信号在投影基上的平均投影能量比达到极值,从而达到提高脑电信号分类准确度的作用。实验结果表明两个运动想象数据集上的最大正确率都达到90%左右,最大分类准确率、kappa系数和最大互信息等评价指标的比较也表明该方法能够有效提高BCI系统的性能,具有较好的实用性。 The brain-computer Interface (BCI) gives interactive communications between people and the machine, and has fascinated the researchers over the last couple of years. However, the BCI system suffers from a low information trans- mission rate, low accuracy and poor interactive performance, which is the bottleneck for the promotion of BCI-actuated sys- tem. Therefore, to classify different motor commands fast with minimal error is an important problem in the BCI system. For the dynamic classification of motor imagery mind states in the brain-computer interface ( BCI), we proposed a power projec- tion based feature extraction method to classify the EEGs by combining information accumulative posterior Bayesian ap- proach. This method improves the classification accuracy by maximizing the average projection energy difference of the two types of signals. The experimental results on two motor imagery datasets show that the maximum classification accuracy is a- bout 90%. With three indexes, i.e. maximum classification accuracy, kappa coefficient and mutual information, the effec- tiveness of this method is demonstrated.
出处 《信号处理》 CSCD 北大核心 2012年第8期1059-1062,共4页 Journal of Signal Processing
基金 国家自然科学基金资助项目(60940023 61172108 61139001 61005088) 国家科技支撑计划项目(2012BAJ18B06) 机器人技术与系统国家重点实验室开放研究项目(SKLRS-2010-ZD-07)
关键词 脑-机接口 运动想象 投影能量 贝叶斯分类 brain-computer interface (BCI) motor imaginary projection power (PP) bayesian classification
  • 相关文献

参考文献9

  • 1Lebedev MA, and Nicolelis AL. Brain-machine inter- faces : past, present and future [J] . Trends in Neuro- sciences ,2006,29 ( 9 ) :536-546. 被引量:1
  • 2Pfurtscheller G. Event-related EEG/EMG synchronization and desynchronization: basic principles [ J ]. Clinical Neurophysiology, 1999,110 ( 11 ) : 1842-1857. 被引量:1
  • 3Liu R, Newman G, and Thakor NV. Improved BCI per- formance with sequential hypothesis testing [ C ] // Proc..of the 33rd IEEE Eng Med Biol Soc.. USA: IEEE,2011. 4215-4218. 被引量:1
  • 4Zhong M, Lotte F, Girolami M, and Lecuyer A. Classifying EEG for brain computer interfaces using gaussian proces- ses [ J ]. Pattern Recognition Letters, 2008, 29 ( 3 ) : 354-359. 被引量:1
  • 5Lemm S, Shafer C, and Curio G. Aggregating classification accuracy accross time: application to single trial EEG [ J ]. Advances in Neural Information Processing Systems, 2007,19:825- 832. 被引量:1
  • 6毕峰,邱天爽.基于时间自相关函数的诱发电位单通道单次提取方法[J].信号处理,2012,28(6):774-777. 被引量:1
  • 7Blankertz B, Miiller KR, Curio TVG, Schalk G, Wolpaw J,Schlgl A, Neuper C, Pfurtscheller G, Hinterberger T, and Birbaumer MSN. The BCI competition 2003: Pro- gress and perspectives in detection and discrimination of EEG single trials [J]. IEEE Trans. Biomed. Eng. , 2004,51 : 1044-1051. 被引量:1
  • 8Blankertz B, M"uller KR, Krusienski D J, Schalk G, Wolpaw JR,Schl"ogl A, Pfurtscheller G, M'lllan JDR,Schroder M,and Birbaumer N. The BCI competition III: Validating alternative approaches to actual BCI problems [ J ]. IEEE Trans. Nem'al Syst. Rehabil,2006,14(2):153-159. 被引量:1
  • 9Dornhege G, Millan J, Hinterberger T, McFarland D J, and Muller KR. Toward brain-computer interfacing [ M ]. Bos- ton : MITPress ,2007. 327-342. 被引量:1

二级参考文献7

  • 1Davies ME, and James CJ. Source separation using single channel ICA [ J ]. Signal Processing, 2007,87 ( 8 ) : 1819 - 1832. 被引量:1
  • 2Xu Peng, and Yao Dezhong. Development and evaluation of the sparse decomposition method with mixed over-complete dictionary for evoked potential estimation [ J ]. Computers in Biology and Medicine,2007,37(12) :1731-1740. 被引量:1
  • 3Wang Zhisong, Maier A, Leopold DA, Logothetis NK, Li- ang Hualou. Single-trial evoked potential estimation using wavelets [J]. Computers in Biology and Medicine,2007, 37 (4) :463-473. 被引量:1
  • 4Kong Xuan, Qiu Tianshuang. Adaptive estimation of la- tency change in evoked potentials by direct least mean p- norm time-delay estimation [ J ]. IEEE Transactions on Biomedical Engineering, 1999,46 ( 8 ) :994-1003. 被引量:1
  • 5Zhang Jiwu, Zheng Chongxun. Extracting evoked poten- tials with the singularity detection technique [ J ]. IEEE Engineering in Medicine and Biology Magazine, 1997,16 (5) :155-161. 被引量:1
  • 6Chen Shaobing, Donoho DL, Saunders, MA. Atomic De- composition by Basis Pursuit [ J 1. SIAM Review, 2001, 43(1) :129-159. 被引量:1
  • 7张纯,杨俊安,张琼.连续相位调制信号的单通道盲分离算法研究[J].信号处理,2011,27(4):569-574. 被引量:10

同被引文献43

  • 1庄玮,段锁林,徐亭婷.基于SVM的4类运动想象的脑电信号分类方法[J].常州大学学报(自然科学版),2014,26(1):42-46. 被引量:5
  • 2安滨,江朝晖,宁艳,陈强,冯焕清.基于ECoG的运动想象分类[J].中国生物医学工程学报,2007,26(1):64-68. 被引量:3
  • 3陈生弟.神经变性性疾病[M].北京:人民军医出版社,2002.270-283. 被引量:8
  • 4Formaggio E, Storti S F, Galazzo I B, etal. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements[n.Journal of Neuroengineering and Rehabilitation, 2013, 100) :24. 被引量:1
  • 5Lotte F, Congedo M, Lecuyer A, et al. A review of classification algorithms for EEG-based brain?computer interfaces[J].Journal of Neural Engineering, 2007, 4(2) :R1-R13. 被引量:1
  • 6Iturrate I, AntelisJ M, Kubler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation[J]. IEEE Transactions on Robotics, 2009, 25(3) :614-627. 被引量:1
  • 7WolpawJ R. Ramoser H. McFarland DJ. etal. EEG-based communication: improved accuracy by response verification[]]. IEEE Transactions on Rehabilitation Engineering. 1998. 6(3): 326-333. 被引量:1
  • 8Roberts SJ. Penny W D. Real-time brain computer interfacing: A preliminary study using Bayesian learning[J]. Medical and Biological Engineering and Computing. 2000. 38(1): 56-6l. 被引量:1
  • 9Blanchard G. Blankertz B. BCl competition 2003- Data Set IIa: Spatial patterns of self-controlled brain rhythm modulations[J]. IEEE Transactions on Biomedical Engineering. 2004.51(6) :1062-1066. 被引量:1
  • 10ZHU Xiao-yuan , GUAN Cun-tai , WUJian-kang , et al. Bayesian method for continuous cursor control in EEG-based brain-computer interface[CJ / / P of the 2005 IEEE Engineering in Medicine and Biology. Shanghai:IEEE. 2005:7052-7055. 被引量:1

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部