摘要
矩阵乘法问题是较为经典的问题,但在应用的方法和方式上还有许多可探索的空间。通过研究矩阵乘法的起源及其应用,提出了用二分求幂法来改进方阵乘幂运算的方案,并进一步拓广了矩阵乘法的定义,使得原来解决网络路径最优解的复杂算法得到了改善。路径最优问题大多采用传统动态规划技术,其计算迭代过程复杂,通过演绎了的古典矩阵乘法,再来解决这个问题,算法得到明显改善,而且简易可行、易于理解。
Matrix multiplication problem is a classic issue, but there is a big space to explore in ways and means of application. This paper proposes the plan to improve square exponentiation programs by the use of binary exponentiation method, and extends the definition of matrix multiplication, on the origin of matrix multiplication, concept, and application, making the original resolve network path the complexity of the solution algorithm improved. The optimal path is mostly the traditional dynamic programming techniques, which is calculated complex iterative process, but through the interpretation of the classical matrix multiplication, and again to solve this problem, the algorithm significantly improved, but also simple and feasible, easy to understand.
出处
《北京印刷学院学报》
2012年第4期60-62,共3页
Journal of Beijing Institute of Graphic Communication
基金
北京市属高等学校人才强教计划资助项目(PHR201107145)
关键词
矩阵乘法
网络
二分求幂
拓广乘法
matrix muhiplication
network
binaryexponentiation
extension of multiplication