期刊文献+

BACKWARD STOCHASTIC VIABILITY AND RELATED PROPERTIES ON Z FOR BSDES WITH APPLICATIONS

BACKWARD STOCHASTIC VIABILITY AND RELATED PROPERTIES ON Z FOR BSDES WITH APPLICATIONS
原文传递
导出
摘要 This paper investigates some important properties of Z, the martingale integrant of the backward stochastic differential equations, which is the second process of the solution. These include the backward stochastic viability property, bounded property and the comparison theorem. To explain the theoretical results, the authors apply them to study a financial contingent claim pricing problem. The replication portfolio process can be characterized clearly.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第4期675-690,共16页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.10921101, 61174092,11026185 and 11101242 the National Science Foundation for Distinguished Young Scholars of China under Grant No.11125102 the Natural Science Foundation of Shandong Province,China under Grant No.ZR2010AQ004 the Independent Innovation Foundation of Shandong University under Grant No. 2009TS036
关键词 Backward stochastic differential equations backward stochastic viability property Malliavin calculus portfolio choice. 倒向随机微分方程 应用程序 属性 比较定理 有界性
  • 相关文献

参考文献14

  • 1E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Leii., 1990, 14: 55-6l. 被引量:1
  • 2N. EI Karoui, S. Peng, and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 1997, 7(1): 1-71. 被引量:1
  • 3S. Peng, A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation, Stochastics Stochastic Rep., 1992,38: 119-134. 被引量:1
  • 4Y. Hu and S. Peng, On the comparison theorem for multidimensional BSDEs, C. R. Math. Acad. Sci. Paris, 2006, 343(2): 135-140. 被引量:1
  • 5R. Buckdahn, M. Quincampoix, and A. Rascanu, Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, 2000, 116: 485-504. 被引量:1
  • 6J. Ma and J. Zhang, Representation theorems for backward stochastic differential equations, The Annals of Applied Probability, 2002, 12: 1390-1418. 被引量:1
  • 7J. Ma and J. Zhang, Path regularity for solutions of backward stochastic differential equations, Probab. Theory Relat. Fields, 2002, 122: 163-190. 被引量:1
  • 8Z. Chen, R. Kulperger, and G. Wei, A comonotonic theorem for BSDEs, Stochastic Processes and Their Applications, 2005, 115: 41-54. 被引量:1
  • 9M. Fuhrman, Y. Hu, and G. Tessitore, On a class of stochastic optimal control problems related to BSDEs with quadratic growth, SIAM J. Control & Optim., 2006, 45(4): 1279-1296. 被引量:1
  • 10J. P. Lepeltier, Z. Wu, and Z. Yu, Nash equilibrium point for one kind of stochastic nonzero-sum game problem and BSDEs, C. R. Math. Acad. Sci. Paris, 2009, 347: 959-964. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部