期刊文献+

一种分解迭代二阶锥规划鲁棒自适应波束形成算法 被引量:11

A Robust Adaptive Beamforming Algorithm Using Decomposition and Iterative Second-order Cone Programming
下载PDF
导出
摘要 为有效克服导向矢量大失配误差对自适应波束形成器的影响,该文提出了一种最差性能最优的分解迭代鲁棒自适应波束形成算法。该算法对非凸的幅度响应约束问题进行分解处理,将问题转化为迭代的二阶锥规划问题,从而可对鲁棒响应区的波束宽度和纹波水平进行自由控制,并可得到较高的输出信干噪比。此外,与现有大部分该类鲁棒波束形成方法相比,提出的算法直接对权矢量进行优化,无需使用谱分解算法,避免了阵列结构的限制,可适用于任意阵形。仿真结果验证了算法的正确性和有效性。 To overcome effectively the influence of large steering vector mismatch on the performance of adaptive beamformer, a Robust Adaptive Beamformer using Decomposition and Iterative Second-Order Cone Programming via Worst-Case performance optimization (RAB-DISOCP-WC) is proposed in this paper. Due to the decomposition and iterative method for the non-convex magnitude response constraints, the problem can be optimally solved using iterative Second-Order Cone Programming (SOCP), then the beamwidth and ripple of the robust response region can be flexibly controlled by the proposed method, and the output Signal-to- Interference-and-Noise Ratio (SINR) can be obviously improved. Moreover, in constrast to most of this class of robust beamformers, the proposed approach can get the optimal weight vector directly, and it does not need any spectral factorization. Thus, the proposed approach does not have any array geometry constraint, and it is applicable to arbitrary array geometries. Simulation results verify the correctness and validity of the proposed approach.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第9期2051-2057,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61179004 61179005)资助课题
关键词 自适应波束形成 导向矢量 权矢量 二阶锥规划 Adaptive beamforming Steering vector Weight vector Second-order cone
  • 相关文献

参考文献21

  • 1Van Trees H L. Optimum Array Processing[M]. New York: USA, Wiley Press, 2002: 1-12. 被引量:1
  • 2Van Veen B D and Buckley K M. Beamforming: a versatile approach to spatial filtering[J]. IEEE ASSP Magazine, 1988, 5(2): 4-24. 被引量:1
  • 3Hudson J E. Adaptive Array Principles[M]. Stevenage, UK, Peregrinus, 1991: 82. 被引量:1
  • 4Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408-1418. 被引量:1
  • 5Li Jian and Stoica P. Robust Adaptive Beamforming[M]. New Jersey: USA, Wiley, 2005: 49-60. 被引量:1
  • 6Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 397-401. 被引量:1
  • 7Vorobyov S A, Gershman A B, and Luo Zhi-quan. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313 -324. 被引量:1
  • 8Li Jian, Stoica P, and Wang Zhi-song. On robust Capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702-1715. 被引量:1
  • 9邹翔,钟子发,张旻.超高斯加载的稳健自适应波束形成及性能分析[J].电子与信息学报,2011,33(12):2888-2893. 被引量:4
  • 10Nai S E, Ser W, Yu Zhu-liang, et al.. Iterative robust minimum variance beamforming[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1601-1611. 被引量:1

二级参考文献26

  • 1鄢社锋,马远良.二阶锥规划方法对于时空域滤波器的优化设计与验证[J].中国科学(E辑),2006,36(2):153-171. 被引量:33
  • 2Li J, Stoica P, and Wang Z. On robust capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702-1715. 被引量:1
  • 3Li J, Stoica P, and Wang Z. Doubly constrained robust capon beamforming[J]. IEEE Transactions on Signal Processing. 2004, 52(9): 2407-2423. 被引量:1
  • 4Vorobyov S A, Gershman A B, and Luo Z Q. Robust adaptive beamforming using worst-ease performance optimization: a solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313-324. 被引量:1
  • 5Vorobyov S A, Chen Haihua, and Gershman A B. On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response constraints[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5719-5724. 被引量:1
  • 6Elnashar A, Elnoubi S M, and EI-M Ikatih A. Further study on robust adaptive beamforming with optimum diagonal loading [J]. IEEE Transactions on Antennas and Propagation, 2006, 54(12): 3647-3658. 被引量:1
  • 7Li J, Lin D, and Stoica P. Fully automatic computation of diagonal loading levels for robust adaptive beamforming [C]. ICASSP 2008, Las Vegas, Nevada, USA, March 30-April 4,2008: 2325-2328. 被引量:1
  • 8Gu Y J, Zhu W P, and Swamy M N S. Adaptive beamforming with joint robustness against covariance matrix uncertainty and signal steering vector mismatch[J]. Electronics Letters, 2010, 46(1): 86-88. 被引量:1
  • 9Boyd S and Vandenberghe L. Convex Optimization. Cambridge University Press. Available at http://www. stanford.edu/-boyd/evxbook.html, 2004. 被引量:1
  • 10Grant M and Boyd S. Cvx users' guide for cvx version 1.2. http://www.stanford.edu/-boyd/cvx.html, 2009. 被引量:1

共引文献21

同被引文献103

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部