期刊文献+

基于属性聚类的项目评分预测推荐算法研究 被引量:5

下载PDF
导出
摘要 针对用户评分数据稀疏性问题,在对项目进行聚类基础上,文章提出了基于属性聚类的项目评分预测推荐算法。算法从项目属性特征相似性分析出发,利用K-Means聚类算法对项目进行聚类。对于未评分项目找到其所属的类簇;利用用户对类簇中其它项目的评分预测该用户对未评分项目的评分,达到降低数据稀疏性目的;最后结合协同过滤思想为用户提供推荐服务。实验结果表明,与基于项目评分预测的推荐算法相比,文章的算法推荐精度显著提高。
出处 《统计与决策》 CSSCI 北大核心 2012年第18期9-11,共3页 Statistics & Decision
基金 国家自然科学基金资助项目(70862001)
  • 相关文献

参考文献9

二级参考文献69

  • 1曾令明,唐常杰,阴小雄,李川,胡建军,蒋永光.双向关联规则挖掘及其相关性分析[J].计算机工程与设计,2005,26(10):2585-2588. 被引量:19
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Srivastava J, Cooley R, Deshpande M, et al. Web usage mining: Discovery and applications of usage patterns from web data [ J ]. SIGKDD Explorations, 2000, 1(2) : 12 - 23. 被引量:1
  • 4Vapnik V. Statistical learning theory [ M ]. New York : JohnWiley & Sons, 1998. 被引量:1
  • 5Boser B, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers [ A ]. In Haussler D, ed. 5th Annual Workshop on Computational Learning Theory[C]. ACM Press, Pittsburgh, 1992, (5) : 144 - 152. 被引量:1
  • 6Scholkopf B, Smola A, Williamson R, Bartlett P. New support vector algorithms[J]. Neural Computation, 2000, (12): 1207 - 1245. 被引量:1
  • 7Wahba G. Multivariate function and operator estimation based on smoothing splines and reproducing kernel[J]. Nonlinear Modeling and Forecasting, 1992, (12) : 95 - 112. 被引量:1
  • 8Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods [ EB/OL]. Microsoft Research, http://research, microsoft, com/- jplatt. 被引量:1
  • 9R el071 package[ CP]. http://www. r-project, org. 被引量:1
  • 10Liu D R,Shih Y Y.Integrating AHP and Data Mining for Product Recommendation Based on Customer Lifetime Value.Information and Management,2005,42 (3):387-400. 被引量:1

共引文献37

同被引文献36

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3Gong L,Xie J,Li X,et al.Study on energy saving strategy and evaluation method of green cloud computing system[C]//2013 8th IEEE Conference on Industrial Electronics and Applications(ICIEA),2013:483-488. 被引量:1
  • 4Guazzone M,Anglano C,Canonico M.Exploiting VM migration for the automated power and performance management of green cloud computing systems[M]//Energy efficient data centers.Berlin:Springer,2012:81-92. 被引量:1
  • 5Baliga J,Ayre R W A,Hinton K,et al.Green cloud computing:balancing energy in processing,storage,and transport[J].Proceedings of the IEEE,2011,99(1):149-167. 被引量:1
  • 6Saaty T L.Fundamentals of decision making and priority theory[M].2nd ed.Pittsburgh,PA:RWS Publications,2000. 被引量:1
  • 7Partovi F Y.Determining what to benchmark:an analytic hierarchy process approach[J].International Journal of Operations&Production Management,1994,14(6):25-39. 被引量:1
  • 8Jain R,Rao B.Application of AHP tool for decision making of choice of technology for extraction of anti-cancer bioactive compounds of plant origin[J].International Journal of the Analytic Hierarchy Process,2013,5(1). 被引量:1
  • 9Sari I U,Oztaysi B,Kahraman C.Fuzzy analytic hierarchy process using type-2 fuzzy sets:an application to warehouse location selection[J].Multicriteria Decision Aid and Artificial Intelligence:Links,Theory and Applications,2013. 被引量:1
  • 10Zhang F,Sun H,Chang J.A spatial clustering-based collaborative filtering algorithm in mobile environment[J].Journal of Computational Information Systems,2010,6(7):2297-2304. 被引量:1

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部