摘要
模糊相对熵可很好地度量两个模糊集之间的差异.文章根据隐写通信过程的不确定性,定义了隐写系统n阶Markov链模型的模糊经验矩阵,提出了隐写系统的模糊相对熵和加权模糊相对熵安全性测度,证明了该安全性测度的非负性、交换性和一致性.此外,由该测度可推导出各种确定模式下安全性测度.仿真实验表明,与同模型下的确定模式安全性测度相比,模糊相对熵及加权模糊相对熵安全性测度对隐写算法安全性的度量能力更强,且随着阶数的增加,对应安全性测度的度量能力增强.隐写算法设计实验也表明模糊相对熵安全性测度可更好地指导设计高安全性的隐写算法.
Fuzzy relative entropy is capable of measuring the difference between two fuzzy sets.According to the indetermi- nacy of steganography communication, a fuzzy empirical matrix for n-th order Markov model is defined.New security measures in terms of fuzzy relative entropy and weighted fuzzy relative entropy are introduced for steganographic system. These new security measures are proved to be nonnegative, symmetric and uniform. Furthermore, some existing security rneasures under a deterministic data statistical distribution model can be derived from the proposed secudty meastaes. Simulation results show the new security measures have better evaluating ability than the existing deterministic secudty measures under the same modeling condition.In addition, the higher the order of the Markov model,the better the measuring ability of the proposed security measures. The proposed security measures may also provide more insights for designs of secure steganographic algorithms.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2012年第8期1515-1522,共8页
Acta Electronica Sinica
基金
国家自然科学基金(No.61171124
No.61103174)
广东省科技计划项目(No.2011B010200045)
广东省高校优秀青年创新人才基金(No.LYM10116)
关键词
隐写系统
模糊相对熵
马尔可夫模型
安全性测度
steganographic system
fuzzy relative entropy
Markov model
security measure