摘要
针对传统差异表达基因识别方法不能处理异质性数据集以及分析结果偏差较大的问题,提出了一个基于元分析及标准差过滤技术的差异表达基因识别算法标准差排序分析(RS-DM)。对来自于不同实验平台的数据进行整合分析,过滤掉伪差异表达基因PDEGs,并找出遗失的真正的差异表达基因TDEGs。经实验验证,算法简单有效。
Traditional methods of Differentially Expressed Genes(DEGs) analysis can not be used to deal with heterogeneous data sets that the analysis results are inconsistent usually.A new method,named Rank Standard Deviation Meta(RSDM) analysis,is proposed in this paper for detecting DEGs.The method is based on the meta-analysis and rank standard deviation filtering technology.The proposed method can detect True Differentially Expressed Genes(TDEGs) and filter Pseudo Differentially Expressed Genes(PDEGs),both TDEGs and PDEGs coming from experimental datasets.The experiment results show that the propose method is of high efficiency.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2012年第5期1262-1266,共5页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金项目(60873146,60803052,60973092,60903097)
吉林省科技发展青年研究项目(201201139,20090116,20101589)
吉林大学研究生创新基金项目(20111062)
关键词
计算机应用
生物信息学
元分析
差异表达基因识别
基因芯片数据
标准差
computer application
bioinformatics
meta-analysis
identification of differentially expressed genes
microarray data
standard deviation