期刊文献+

基于元分析的差异表达基因识别 被引量:3

RSDM:A method to identify differentially expressed genes based on meta-analysis
下载PDF
导出
摘要 针对传统差异表达基因识别方法不能处理异质性数据集以及分析结果偏差较大的问题,提出了一个基于元分析及标准差过滤技术的差异表达基因识别算法标准差排序分析(RS-DM)。对来自于不同实验平台的数据进行整合分析,过滤掉伪差异表达基因PDEGs,并找出遗失的真正的差异表达基因TDEGs。经实验验证,算法简单有效。 Traditional methods of Differentially Expressed Genes(DEGs) analysis can not be used to deal with heterogeneous data sets that the analysis results are inconsistent usually.A new method,named Rank Standard Deviation Meta(RSDM) analysis,is proposed in this paper for detecting DEGs.The method is based on the meta-analysis and rank standard deviation filtering technology.The proposed method can detect True Differentially Expressed Genes(TDEGs) and filter Pseudo Differentially Expressed Genes(PDEGs),both TDEGs and PDEGs coming from experimental datasets.The experiment results show that the propose method is of high efficiency.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期1262-1266,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60873146,60803052,60973092,60903097) 吉林省科技发展青年研究项目(201201139,20090116,20101589) 吉林大学研究生创新基金项目(20111062)
关键词 计算机应用 生物信息学 元分析 差异表达基因识别 基因芯片数据 标准差 computer application bioinformatics meta-analysis identification of differentially expressed genes microarray data standard deviation
  • 相关文献

参考文献15

  • 1Stiglic Gregor, Mateja Bajgot, Kokol Peter. Gene set enrichment meta-learning analysis: next-generation sequencing versus microarrays[J]. BMC Bioinformatics, 2010, doi: 10. 1186/1471-2105-11-176. 被引量:1
  • 2Ling Zhi-qiang, Wang Yi, Mukaisho Keniehi. Novel statistical framework to identify differentially expressed genes allowing transeriptomie background differences[J]. Bioinformaties, 2010, 26 ( 11 ): 1431-1436. 被引量:1
  • 3Tusher V G, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response [ J ]. Proceedings National Academy Science United States America, 2001, 98(9) : 5116- 5121. 被引量:1
  • 4Irizarry R A, Warren D, Spencer F. Multiple-laboratory comparison of microarray platforms[J]. Nat Methods, 2005, 2(5):345-349. 被引量:1
  • 5Kuo W P, Jenssen T-K, Butte A J. Analysis of matched mRNA measurements from two different microarray technologies[J]. Bioinformatics, 2002, 18(3) :405-412. 被引量:1
  • 6Choi J K, Yu U, Kim S,et al. Combining multiple microarray studies and modeling interstudy variation [J]. Bioinformatics, 2003, 19(Sup. 1): 84-90. 被引量:1
  • 7Fangxin Hong, Breitling Rainer. A comparison of meta-analysis methods for detecting differentially expressed genes in mieroarray experiments [J]. Bioinformatics, ?008, 24(3): 374-382. 被引量:1
  • 8Kim J, Patel K, Jung H, et al. Any express: integrated toolkit for analysis of cross-platform gene expression data using a fast interval matching algorithm[J]. BMC Bioinformatics, 2011. doi: 10. 1186/ 1471-2105-12-75. 被引量:1
  • 9Mehra R, Varambally S, Ding L, et al. Identification of GAT A3 as a breast cancer prognostic marker by global gene expression meta analysis[J]. Cancer Research, 2005, 65: 11259-11264. 被引量:1
  • 10刘桂霞,田原,郑明,赖丽娜,臧雪柏,周春光.基于元分析的差异表达基因识别[J].吉林大学学报(工学版),2010,40(5):1308-1312. 被引量:2

二级参考文献12

  • 1Bernthaler A, Muhlberger I, Feehete R,et al. A dependency graph approach for the analysis of differential gene expression profiles[J]. Mol Biosyst, 2009,5 (12) : 1720-1731. 被引量:1
  • 2Pounds Stan, Rai Shesh N. Assumption adequacy averaging as a concept for developing more robust methods for differential gene expression analysis [J].Computational Statistics and Data Analysis , 2009,53 : 1604-1612. 被引量:1
  • 3Mehra R, Varambally S, Ding L,et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis[J]. Cancer Res,2005,65,11259 -11264. 被引量:1
  • 4Egger M, Smith G D. Meta-analysis. Potentials and promise[J].Bmj, 1997, 315:1371-1374. 被引量:1
  • 5Rhodes D R, Yu J, Shanker K, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression[C]//Proceedings of the National Academy of Sciences of the United States of America, USA,2004. 被引量:1
  • 6Schneider J, Ruschhaupt M, Buness A,et al. Identification and meta-analysis of a small gene expression signature for the diagnosis of estrogen receptor status in invasive ductal breast cancer[J]. Int J Cancer, 2006,119(12) : 2974-2979. 被引量:1
  • 7Rhodes D R, Barrette T R, Rubin M A,et al. Metaanalysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregula- tion in prostate cancer[J].Cancer Res, 2002, 62: 4427-4433. 被引量:1
  • 8Jung Kyoon Choi, Ungsik Yu, Sangsoo Kim,et al. Combining multiple microarray studies and modeling interstudy variation[J]. Bioinformatics, 2003,19 : 84- 89. 被引量:1
  • 9Smith D D, Saetrom P, Snq, ve Jr,et al. Meta-analysis of breast cancer microarray studies in conjunction with conserved cis-elements suggest patterns for coordinate regulation[C]//Proceedings of the National Academy of Sciences of the United States of America,USA,2001. 被引量:1
  • 10Tusher V G, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radia- tion response[J]. Proc Natl Acad Sci U S A , 2001, 98:5116-5121. 被引量:1

共引文献1

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部