期刊文献+

基于自适应重叠系数的T-S模型在线辨识算法及应用 被引量:4

Online T-S model identification algorithm based on adaptive overlap coefficient and its application
原文传递
导出
摘要 为使T-S模型在线辨识时能够更加合理地划分模糊空间,提出一种根据相邻聚类中心距离确定模糊空间重叠系数的方法,将该方法与一次完成最小二乘法、递推最小二乘法相结合,得到了一种辨识精度较高的T-S模型在线辨识算法,以某型号单晶炉热场的实际运行数据为对象,应用所提出的算法对热场模型进行在线辨识,辨识结果表明,由该辨识算法得到的单晶炉热场模型具有较高的精度。 To more reasonably partition fuzzy spaces during online identification of T-S model, a calculation method on overlap coefficient betweeh two fuzzy spaces is proposed. In this method, the overlap coefficient can be derived by the centre distance between two contiguous clusters. In addition, an online T-S model identification algorithm which has higher identification accuracy can be obtained through the integration of this method, least square(LS) algorithm and recursive least square(RLS) algorithm. Based on the data of thermal field from a single crystal furnace, the thermal field model is on-line identified by this identification algorithm. Simulation results show that the single crystal furnace thermal field model identified by this method has higher precision.
出处 《控制与决策》 EI CSCD 北大核心 2012年第9期1425-1428,1432,共5页 Control and Decision
基金 国家科技重大专项资金项目(2009ZX02011001)
关键词 T-S模型 在线辨识 自适应重叠系数 聚类 最小二乘 单晶炉热场 T-S model, online identification adaptive overlap coefficient, cluster, least square, single crystal furnacethermal field
  • 相关文献

参考文献14

  • 1陈建勤,席裕庚,张钟俊.用模糊模型在线辨识非线性系统[J].自动化学报,1998,24(1):90-94. 被引量:50
  • 2Angelov P P, Filev D P. An approach to online identification of Takagi-Sugeno fuzzy models[J]. IEEE Trans on Systems, Man, and Cybernetics, 2004, 34(1): 484-498. 被引量:1
  • 3潘天红,薛振框,李少远.基于减法聚类的多模型在线辨识算法[J].自动化学报,2009,35(2):220-224. 被引量:21
  • 4廖龙涛,李少远,黄广斌.规则可生长与修剪的非线性系统T-S模糊模型辨识[J].自动化学报,2007,33(10):1097-1100. 被引量:12
  • 5Wang Ning, Meng Joo Er, Meng Xianyao. A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks[J]. Neurocomputing, 2009, 72(16/17/18): 3818-3829. 被引量:1
  • 6Juang Chia-Feng, Lin Chin-Teng. An on-line self- constructing neural fuzzy inference network and its applications[J]. IEEE Trans on Fuzzy Systems, 1998, 6(1): 12-32. 被引量:1
  • 7Juang Chia-Feng, Chiu Shih-Hsuan, Chang Shu-Wew. A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems[J]. IEEE Trans on Fuzzy Systems, 2007, 15(5): 998-1008. 被引量:1
  • 8Karim Salahshoor, Morteza Hamzehnejad. A novel online affine model identification of multivariable processes using adaptive neuro-fuzzy networks[J]. Chemical Engineering Research and Design, 2010, 88(2): 155-169. 被引量:1
  • 9Jang J S R, Sun C T. Functional equivalence between radial basis function networks and fuzzy inference system[J]. IEEE Trans on Neural Networks, 1993, 4(1): 156-159. 被引量:1
  • 10Euntai K, Minkee P, Seunghwan J, et al. A new approach to fuzzy modeling[J]. IEEE Trans on Fuzzy Systems, 1997,5(3): 328-337. 被引量:1

二级参考文献21

  • 1薛振框,李少远.一种基于加权性能指标的多模型辨识算法及其在热工过程中的应用[J].自动化学报,2005,31(3):470-474. 被引量:3
  • 2Mohan B M, Sinha A. Analytical structure and stability analysis of a fuzzy PID controller. Applied Soft Computing, 2008, 8(1): 749-758. 被引量:1
  • 3Angelov P P, Lughofer E. A comparative study of two approemhes for data-driven design of evolving fuzzy systems: eTS and FLEXFIS. International Journal on General Systems, 2008, 37(1): 45-67. 被引量:1
  • 4Angelov P P, Filev D P. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(1): 484-498. 被引量:1
  • 5Gregorcic G, Lightbody G. Local model network identification with Gaussian processes. IEEE Transactions on Neural Networks, 2007, 18(5): 1404-1423. 被引量:1
  • 6Chiu S L. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 1994, 2(3): 267-278. 被引量:1
  • 7Ramirez R G. Overall Intelligent Hybrid Control System for a Fossil-fuel Power Unit [Ph.D. dissertation], The Pennsylvania State University, USA, 2000. 被引量:1
  • 8Wang L X,IEEE Trans Syst,1992年,6期,1414页 被引量:1
  • 9Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control.IEEE Transactions on Systems,Man,and Cybernetic,1985,15(1):116-132 被引量:1
  • 10Ying H.Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequent.IEEE Transactions on Systems,Man,and Cybernetic,1998,28(4):515-520 被引量:1

共引文献79

同被引文献78

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部