期刊文献+

基于直方图统计量的逆合成孔径雷达目标识别 被引量:5

Target classification for ISAR image based on histogram statistics
下载PDF
导出
摘要 将原用于人脸识别的基于Gabor局部二进制模式的识别技术用于逆合成孔径雷达(ISAR)像的雷达目标识别,对算法进行了改进,取得了较好的识别效果。将ISAR像进行Gabor小波变换,提取不同尺度和方向的Gabor幅值图谱;然后把幅值图谱分成小的子区域,用多尺度局部二值模式提取空域增强的直方图作为特征,最后在χ2统计量作为不相似度量计算的特征空间里,采用最近邻分类器完成五类目标的分类识别。与目前已有的几种典型ISAR目标识别方法进行了对比,结果表明:该方法是可行且有效的,能够明显地提高识别率。 Local Gabor binary patterns (LGBP) method in face recognition is im- proved and applied in inverse synthetic aperture radar (ISAR) target recognition. Firstly, the corresponding Gabor magnitude maps (GMMs) are obtained by convol- ving the enhanced ISAR image with multi-scale and multi-orientation Gabor filters. Then, each GMM is divided into small regions from which multi-scale block local binary pattern is used to extract histogram features. At last, five-type aircraft mod- els are classified by using a nearest neighbor classifier with Chi square as a dissimi- larity measure in the computed feature space. Compared with other recognition methods, the numerical results show that the proposed method is effective and has higher recognition performance.
出处 《电波科学学报》 EI CSCD 北大核心 2012年第4期726-732,共7页 Chinese Journal of Radio Science
关键词 逆合成孔径雷达 GABOR滤波器 多尺度局部二值模式 目标识别 ISAR Gabor filter multi-scale block local binary patterns (MB-LBP) target recognition
  • 相关文献

参考文献10

二级参考文献77

共引文献121

同被引文献41

  • 1王芳,盛卫星,马晓峰,王昊.基于B(2D)~2PGNMF的ISAR像目标识别[J].南京理工大学学报,2013,37(6):863-868. 被引量:2
  • 2郭尊华,李少洪.基于积谱的雷达目标高分辨率距离像识别[J].北京航空航天大学学报,2006,32(4):404-406. 被引量:2
  • 3保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2006. 被引量:66
  • 4Olivier K,Cilliers J E,du Plessis M. Design and perform-ance of wideband DRFM for radar test and evaluation[J]. Electronics Letters,2011,47(14):824-825. 被引量:1
  • 5Berger S D. Digital radio frequency memory linear rangegate stealer spectrum[J]. IEEE Transactions on Aero-space and Electronic System,2003,39(2):725-735. 被引量:1
  • 6Greco M,Gini F,Farina A. Radar Detection and Classifi-cation of Jamming Signals Belonging to a Cone Class[J].IEEE Transactions on Signal Processing,2008,56(5):1984-1993. 被引量:1
  • 7Bandiera F,Farina A,Orlando D,et al. Detection Algo-rithms to Discriminate Between Radar Targets and ECMSignals[J]. IEEE Transactions on Signal Processing,2010,58(12):5984-5993. 被引量:1
  • 8Blair W D,Brandt-Pearce M. Discrimination of targetand RGPO echoes using frequency diversity[C] / / Pro-ceedings of 29th Southeastern Symposium on System The-ory. Cookeville:IEEE,1997:509-513. 被引量:1
  • 9Tian X. Radar deceptive jamming detection based ongoodness-of-fit testing[J]. Journal of Information andComputational Science, 2012,9(13):3839-3847. 被引量:1
  • 10Ojala T,Pietikainen M,Harwood D. A comparative study oftexture measures with classification based on featured dis-tributions[J]. Pattern Recognition,1996,29(1):51-59. 被引量:1

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部