期刊文献+

基于偏微分方程(PDE)的非线性流形计算方法研究

Non-linear Manifold Computation Based on PDE
下载PDF
导出
摘要 本文研究自治非线性系统平衡点的流形计算问题。不变流形的计算对于了解系统的动力学特性具有非常重要的作用。不变流形一般不能通过解析表达式求解,而只能通过数值计算的方法得到。分析了PED方法的使用条件,并且在Lorenz模型下进行仿真实验。 In this paper, we study the computation of manifolds for nonlinear autonomous systems. The computation of invariant manifolds is crucial to understanding a system's global behavior. In most cases, invariant cannot be acquired analytically, but could only be found numerically. The PDE condition has been analyzed in the paper, and the simulation has been done using Lorenz model.
作者 李视阳
出处 《科教导刊》 2012年第24期122-123,共2页 The Guide Of Science & Education
关键词 非线性信号 流形计算 逆风条件 non-linear signal manifold computing upwinding condition
  • 相关文献

参考文献9

  • 1Palis J,Melo W D. Geometric Theory of Dynamical Sytems[M].Springer-verlag,1982. 被引量:1
  • 2B Krauskopf,H Osinga. Growing unstable manifolds of planar maps[J].Computer in Physics,1997. 被引量:1
  • 3李清都,杨晓松.二维不稳定流形的计算[J].计算物理,2005,22(6):549-554. 被引量:10
  • 4B.Krauskopf,H.M.Osinga. Growing 1D and quasi-2D unstable manifoldsof maps[J].Computer in Physics,1998,(01):406-419. 被引量:1
  • 5B.Krauskopf,H.M Osinga. Computing 1D stable manifolds of planer maps without the inverse[J].Appl Dyn Syst,2004. 被引量:1
  • 6M.E.Johnson,M.S.Jolly,I.G.Kevrekidis. Two-dimensional inveriant manifolds and global bifurcations:Some approximation and visualization studies[J].Numerical Algorithms,1997,(14):125-140. 被引量:1
  • 7J.Guckenheimer,P.Woffolk. Dynamical systems:Some computational problems[M].Kluwer Academic Publishers,1993.241-277. 被引量:1
  • 8B.Krauskopf,H.M.Osinga. Two-dimensional global manifolds of vector fields[J].Chaos,1999,(03):768-774. 被引量:1
  • 9Guckenheimer,J,Vladimirsky,A. A fast method for approximating invariant manifolds[J].Appl Dyn Sys,2004,(03):232-260. 被引量:1

二级参考文献7

  • 1Serban R, Koon W S, et al. Optimal control for halo orbit missions [ A ] . Proceedings of IFAC Workshop[ C ]. New Jersey: Princeton University, 2000.1 - 6. 被引量:1
  • 2Chiang H D, Hirsch M W, Wu F F. Stability region of nonlinear autonomous dynamical systems [ J]. IEEE Trans Automat Contr, 1988,33:16-27. 被引量:1
  • 3Johnson M E, Jolly M S, Kevrekidis I G. Two-dimensional invariant manifolds and global bifurcations: Some approximation and visualization studies [J]. Numer Algorithms, 1997,14:125 - 140. 被引量:1
  • 4Guckenheimer J, Worfolk P. Dynamical systems: some computational problems [ A ]. In: Schlomiuk D (Kluwer, Dordrecht ), ed.Bifurcations and Periodic Orbits of Vector Fields[ M]. 1993.241 -277. 被引量:1
  • 5Doedel E J, Champneys A R, et al. AUTO97 continuation and bifurcation software for ordinary differential equations [ Z]. 1997,available via ftp://ftp. cs. concordia. ca/pub/doedel/auto/ 被引量:1
  • 6Krauskopf B, Osinga H M. Globalizing two-dimensional unstable manifolds of maps [J]. Int J Bifurcation Chaos Appl Sci Eng, 1998,8:483 - 503. 被引量:1
  • 7Krauskopf B, Osinga H M. Two-dimensional global manifolds of vector fields [J]. Chaos, 1999,9(3) :768 - 779. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部