期刊文献+

自适应上界的相对最大分离比单球面分类器

Maximum Relative Separation Ratio Single Spherical Classifier with an Adaptive Upper Bound
下载PDF
导出
摘要 单球面分类器(RSS)以最大分离比为目标,对负类样本的分布情况缺乏考虑。根据Fisher判别准则,将相对间隔的思想引入到单球面分类器中,对特征空间中负类样本的分布上界进行约束来增强其内聚度,以提高分类器判别的准确性。由于分布上界的不可预测,为避免问题不可解,建立了自适应上界的最大相对分离比单球面分类器模型(ARRSS),并对模型参数进行了分析。实验证明,与单球面分类器相比,该方法表现出更好的泛化能力。 Without taking the spread of negative class samples into account,the objective of single spherical classifier(RSS)is only to maximize the separation ratio.According to the Fisher discriminant analysis,this paper introduced relative margin into RSS to enhance the cohesion of negative class samples and improve the discriminant accuracy by the upper bound constraint in the feature space.Because the upper bound is unpredictable,a maximum relative separation ratio single spherical classifier with an adaptive upper bound(ARRSS)was built to avoid no solution and its parameters were researched afterwards.Experiments show the proposed method achieves better generalization performance compared with RSS.
作者 张伟 柳先辉
出处 《计算机科学》 CSCD 北大核心 2012年第9期188-191,214,共5页 Computer Science
基金 国家高新技术研究发展计划(863)项目(2009AA043503) 国家科技支撑计划项目(2012BAF10B05)资助
关键词 单球面分类器 FISHER判别 相对间隔 上界约束 自适应上界 RSS Fisher discriminant analysis Relative margin Upper bound constraint Adaptive upper bound
  • 相关文献

参考文献13

  • 1Cortes C, Vapnik V. Support vector network[J]. Machine Learning, 1995,20(3) : 273-297. 被引量:1
  • 2Vapnik V. The nature of statistical learning theory [M]. New York: Springer, 1995. 被引量:1
  • 3Tax M J, Duin P W. Suppolt vector domain description [J]. Pat- tern Recognition Letters, 1999,20 : 1 191-1199. 被引量:1
  • 4Schokopf B,Platt J C, Taylor J S, et al. Estimating the support of a high-dimensional distribution [J]. Neural Computation, 2001,13 : 1443-1471. 被引量:1
  • 5Larry M M, Malik Y. One-class SVMs for document classifica- tion [J]. Journal of Machine Learning Research, 2001,2: 139- 154. 被引量:1
  • 6Chen Y Q, Zhou X S, Huang T S. One-class SVM for learning in image retrieval [C]//Proceedings of the 2001 IEEE International Conference on Image Processing. Greece: Thessaloniki, 2001,1: 34-37. 被引量:1
  • 7Zhu M L,Chen S F, Liu X D. Sphere-structured support vector machines for multi-class pattern recognition [J].Lecture Notes in Computer Science, 2003, 2639 : 589-593. 被引量:1
  • 8Wang J G, Neskovic P, Cooper L N. Pattern classification via single spheres [J]. Lecture Notes in Computer Science, 2005, 3735:241-252. 被引量:1
  • 9Hao P Y,Chiang J H,Lin Y H. A new maximal margin spheri cal structured multiclass support vetor machine [J].Applied In- telligence, 2009,30(2) : 98-111. 被引量:1
  • 10文传军,詹永照,陈长军.最大间隔最小体积球形支持向量机[J].控制与决策,2010,25(1):79-83. 被引量:19

二级参考文献2

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部