期刊文献+

RBFs-MSA Hybrid Method for Mesh Deformation 被引量:9

RBFs-MSA Hybrid Method for Mesh Deformation
原文传递
导出
摘要 Simulating unsteady flow phenomena involving moving boundaries is a challenging task,one key requirement of which is a reliable and fast algorithm to deform the computational mesh.Radial basis functions(RBFs) interpolation is a very simple and robust method to deform the mesh.However,the number of operations and the requirement of memory storage will be increased rapidly as the number of grid nodes increases,which limits the application of RBFs to three-dimensional(3D) moving mesh.Moving submesh approach(MSA) is an efficient method,but its robustness depends on the method used to deform the background mesh.A hybrid method which combines the benefits of MSA and RBFs interpolation,which is called RBFs-MSA,has been presented.This hybrid method is proved to be robust and efficient via several numerical examples.From the aspect of the quality of deforming meshes,this hybrid method is comparable with the RBFs interpolation;from the aspect of computing efficiency,one test case shows that RBFs-MSA is about two orders of magnitude faster than RBFs interpolation.For these benefits of RBFs-MSA,the new method is suitable for unsteady flow simulation which refers to boundaries movement. Simulating unsteady flow phenomena involving moving boundaries is a challenging task,one key requirement of which is a reliable and fast algorithm to deform the computational mesh.Radial basis functions(RBFs) interpolation is a very simple and robust method to deform the mesh.However,the number of operations and the requirement of memory storage will be increased rapidly as the number of grid nodes increases,which limits the application of RBFs to three-dimensional(3D) moving mesh.Moving submesh approach(MSA) is an efficient method,but its robustness depends on the method used to deform the background mesh.A hybrid method which combines the benefits of MSA and RBFs interpolation,which is called RBFs-MSA,has been presented.This hybrid method is proved to be robust and efficient via several numerical examples.From the aspect of the quality of deforming meshes,this hybrid method is comparable with the RBFs interpolation;from the aspect of computing efficiency,one test case shows that RBFs-MSA is about two orders of magnitude faster than RBFs interpolation.For these benefits of RBFs-MSA,the new method is suitable for unsteady flow simulation which refers to boundaries movement.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第4期500-507,共8页 中国航空学报(英文版)
基金 Innovation Foundation of CASC(201103) Aeronautical Science Foundation of China(20091488003)
关键词 moving mesh mesh deforming radial basis functions interpolation moving submesh approach CFD moving mesh mesh deforming radial basis functions interpolation moving submesh approach CFD
  • 相关文献

参考文献2

二级参考文献23

  • 1李水乡,陈斌,赵亮,刘曰武.快速Delaunay逐点插入网格生成算法[J].北京大学学报(自然科学版),2007,43(3):302-306. 被引量:19
  • 2[3]Shyy W,Lian Y.Aerodynamics of low reynolds number flyers[M].Cambridge:Cambridge University Press,2007. 被引量:1
  • 3[5]Batina J T.Unsteady euler algorithm with unstructured dynamic mesh for complex aircraft aerodynamic analysis[J].AIAA J,1991,29(3):327-333. 被引量:1
  • 4[6]Farhat C,Degand C,Koobus B.Torsional springs for two-dimensional dynamic unstructured fluid meshes[J].Computer Methods in Applied Mechanics and Engineering,1998,163:231-245. 被引量:1
  • 5[7]Degand C,Farhat C.A three-dimensional torsional spring anaolgy method for unstructured dynamic meshes[J].Computers and Structures,2002,80:305-316. 被引量:1
  • 6[8]Burg O E.A robust unstructured grid movement strategy using three-deimensional torsional springs[R].AIAA 2004-2529,2004. 被引量:1
  • 7[9]Murayama M,Nakahashi K,Matsushima K.Unstructured dynamic mesh for large movement and deformation[R].AIAA 2002-0122,2002. 被引量:1
  • 8[10]Carlo L B,Davide D.The ball-vertex method:a new simple spring analogy method for unstructured dynamic meshes[J].Computer Methods in Applied Mecharics and Engineering,2005,194:4244-4264. 被引量:1
  • 9[11]Zeng D H,Ethier C R.A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains[J].Finite Elements in Analysis Design,2005,41:1118-1139. 被引量:1
  • 10[12]Lin X Q,Qin N,Xia H.Fast dynamic grid deformation based on Delaunay graph mapping[J].Comput phys,2006,211 (2):405-423. 被引量:1

共引文献32

同被引文献120

  • 1郭正,谭杰,刘君.振动矩形机翼非线性绕流数值研究[J].国防科技大学学报,2005,27(4):13-17. 被引量:3
  • 2Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Compu tational Physics, 2006, 211: 405-423. 被引量:1
  • 3Zhang LP, ChangX H, Duan X P, et al. A block LU- SGS implicit unsteady incompressible flow solver on hy-brid dynamic grids for 2D external bio-fluid simulations [J]. Computers & Fluids, 2009, 38(2): 290- 308. 被引量:1
  • 4Rendall T C S, Allen C B. Fluid-structure interpolation and mesh motion using radial basis functions[J], lnterna tional Journal for Numerical Methods in Engineering, 2008, 75(10):1519-1559. 被引量:1
  • 5Rendall T C S, Allen C B. Efficient mesh motion using ra dial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 229 (7) : 6231- 6249. 被引量:1
  • 6Rendall T C S, Allen C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8) : 2810-2820. 被引量:1
  • 7肖天航,昂海松,仝超.大幅运动复杂构形扑翼动态网格生成的一种新方法[J].航空学报,2008,29(1):41-48. 被引量:20
  • 8李盾,何跃龙,纪楚群.多体分离数值模拟研究与应用[C]∥北京力学会第19届学术年会论文集.北京:北京力学会,2013:121-122. 被引量:1
  • 9何跃龙,李盾,刘晓文.非结构直角网格动网格方法[C]∥北京力学会第18届学术年会论文集.北京:北京力学会.2012.19-20. 被引量:1
  • 10BATINA J T. Unsteady euler airfoil solutions using un structured dynamic meshes[J]. AIAA Journal, 1990, 28 (8) : 1381-1388. 被引量:1

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部