期刊文献+

基因组改组快速提高谷氨酸棒杆菌L-鸟氨酸产量 被引量:2

Genome Shuffling for Rapid Improvement of L-Ornithine Production by Corynebacterium glutamicum
下载PDF
导出
摘要 以谷氨酸棒杆菌ATCC13032为出发菌,应用基因组改组技术快速提高L-鸟氨酸产量。经过紫外线、亚硝基胍和甲基磺酸乙酯分别诱变处理,获得6株产量有所提高的突变株,以此构建用于基因组改组的候选菌库。考察培养基成分对原生质体再生率的影响。经过两轮的灭活原生质体递推式融合,以磺胺胍和氟化钠为双抗性筛选标记,共筛选出2株遗传性能稳定的改组菌株。其中改组菌株F2-6摇瓶发酵72h,积累L-鸟氨酸产量为2.99g/L,是出发菌株的13.6倍。结果表明基因组改组技术能够在短期内使谷氨酸棒杆菌的L-鸟氨酸产量得以提高。 Genome shuffling was applied to Corynebacterium glutamicum ATCC13032 to achieve rapid improvement of L-ornithine production.Six mutant strains with subtle improvements in L-ornithine production were obtained by treatment with UV light,nitrosoguanidine or ethyl methane sulfonate and subjected to recursive protoplast fusion.The effects of medium components on the protoplast regeneration rate were investigated.High-yield strains were screened using plates containing different concentrations of sulfaguanidine and NaF.After two rounds of genome shuffling,two shuffled strains producing L-ornithine at high level with good genetic stability were selected and named as F2-6 and F2-29.After 72h of shake-flask fermentation,the L-ornithine yield of strain F2-6 reached 2.99 g/L,which was 13.6 times higher than that of the original strain.
出处 《食品科学》 EI CAS CSCD 北大核心 2012年第15期206-209,共4页 Food Science
基金 国家自然科学基金面上项目(20876181)
关键词 基因组改组 谷氨酸棒杆菌 L-鸟氨酸 产量 genome shuffling Corynebacterium glutamicum L-ornithine production
  • 相关文献

参考文献20

  • 1MORRIS S M. Regulation of enzymes of the urea cycle and arginine metabolism[J]. Annu Rev Nutr, 2002, 22: 87-105. 被引量:1
  • 2汪江波,邹玉玲,薛海燕.L-鸟氨酸的生物功能及生产研究[J].食品研究与开发,2007,28(3):166-169. 被引量:21
  • 3JALAN R, WRIGHT G, DAVIES N A, et al. L-OmithJne phenylacetate (OP): a novel teatment for hyperammonemia and hepatic encephalopathy [J]. Med Hypotheses, 2007, 69: 1064-1069. 被引量:1
  • 4SHI H P, FISHEL R S, EFRON D T, et al. Effect of supplemental ornithine on wound healing[J]. J Surg Res, 2002, 106: 299-302. 被引量:1
  • 5GOTOH T, KIKUCHI K I, KAGAYA A. Direct production of L-orni- thine from casein by commercial digestive enzymes and in situ activated arginase[J]. Bioprocess Biosyst Eng, 2010, 33: 773-777. 被引量:1
  • 6HWANG J H, HWANG G H, CHO J Y. Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum [J]. J Microbiol Biotechnol, 2008, 18(4): 704-710. 被引量:1
  • 7LEE S Y, CHO J Y, LEE H J, et al. Enhancement of ornithine produc- tion in proline-supplemented Corynebacterium glutamicum by ormi- thine cyclodeaminase[J]. J Microbiol Biotechnol, 2010, 20(1): 127-131. 被引量:1
  • 8LEE Y J, CHO J Y. Genetic manipulation of a primary metabolic pathway for L-orrtithine production in Escherichia coli[J]. Biotechnol Lett, 2006, 28: 1849-1856. 被引量:1
  • 9ZHANG Yingxin, PERRY K, VINCI V A, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria[J]. Nature, 2002, 415: 644- 646. 被引量:1
  • 10KANG J X, CHEN X J, CHEN W R, et al. Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling[J]. Process Biochem, 2011, 46: 792-795. 被引量:1

二级参考文献74

共引文献79

同被引文献29

  • 1Howatson G, Hoad M, Goodall S, et al. Exercise- induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study[J]. Journal of the International Society of Sports Nutrition, 2012,9 (1) :20. 被引量:1
  • 2KawaguchiT, Izumi N, Charlton M R, et al. Branched-chain amino acids as pharmacological nutri- ents in chronic liver disease[J]. Hepatology, 2011,54 (3) : 1063-1070. 被引量:1
  • 3Gloaguen M, Le Floc'h N, Brossard L, et al. Re- sponse of piglets to the valine content in diet in combi- nation with the supply of other branched-chain amino acids[J]. Animal, 2011,5(11) : 1734-1742. 被引量:1
  • 4Park J H, Lee K H, Kim T Y, etal. Metabolic engi- neering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation [J]. Proc Natl Acad Sci USA, 2007,104(19) : 7797-7802. 被引量:1
  • 5Hasegawa S, Uematsu K, Natsuma Y, et al. Im- provement of the redox balance increases L-valine production by Corynebacterium glutamicurn under ox- ygen deprivation conditions[J]. Appl Environ Microbi- ol, 2012,78(3) :865-875. 被引量:1
  • 6HouXH, Ge X Y, Wu D, et al. Improvement of L-valine production at high temperature in Brevibacte- rium flavum by overexpressing ilv EBNrC genes[J]. J Ind Microbiol Biotechnol, 2012,39 (1) : 63-72. 被引量:1
  • 7Peng Z J, Fang J, Li J H, et al. Combined dissolved oxygen and pH control strategy to improve the fermen- tative production of L-isoleucine by Brevibacterium lactofermentum[J]. Bioprocess Biosyst Eng, 2010,33 (3) :339-345. 被引量:1
  • 8Park J H, Jang Y S, Lee J W, etal. Escherichia coli was a new platform strain for the enhanced production of L-Valine by systems metabolic engineering[J]. Bio-technol Bioeng, 2011,108(5):1140-1147. 被引量:1
  • 9Singh B K, Shaner D L. Biosynthesis of branched chain amino acids: from test tube to field[J]. Plant Cell, 1995,7(7) :935-944. 被引量:1
  • 10Epelbaum S, La Rossa R A, Van Dyk T K, et al. Branched-chain amino acid biosynthesis in Salmonella typhimurium : a quantitative analysis[J]. J Bacteriol, 1998,180(16) :4056-4067. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部