期刊文献+

基于双阈值运动区域分割的AdaBoost行人检测算法 被引量:4

AdaBoost pedestrian detection algorithm based on dual-threshold motion area segmentation
下载PDF
导出
摘要 结合单目摄像机静止拍摄的视频序列使用背景差法或AdaBoost算法检测行人时分别存在易受噪声干扰或检测速度慢的问题,提出一种双阈值运动区域分割的AdaBoost快速行人检测算法。首先建立背景帧,利用前景帧与背景帧的差分图像拟合噪声曲线,提取噪声与亮暗运动目标的阈值,消除噪声,分割出运动区域;然后通过AdaBoost学习算法选择少量有效的Haar-like弱矩形特征构造强分类器;最后在运动区域利用强分类器检测是否包含行人。实验结果表明,该方法迅速缩小了检测范围,加快了检测速度,降低了误检率。 In view of the problem that the pedestrian detection in the video sequences from a monocular fixed camera was easily effected by the noise with background difference method or the detection speed was low with the AdaBoost algorithm respectively,this paper proposed a fast AdaBoost pedestrian detection algorithm based on dual-threshold motion area segmentation by combining AdaBoost with background difference.First,it setup background frame and the foreground frame subtracted it to get the differential image.It extracted the two thresholds between the fitted Gauss noise and the bright/dark motion target from the differential image,and then segmented out the moving areas.Second,it selected a small amount of available Haar-like weak rectangle features to integrate a strong classifier by the AdaBoost learning algorithm.Finally,it adopted strong classifier to judge if the moving areas included the pedestrians.Experimental results show that the algorithm not only reduces the detection range compared to the whole image range and accelerates detection,but also decreases the false alarm rate
出处 《计算机应用研究》 CSCD 北大核心 2012年第9期3571-3574,3596,共5页 Application Research of Computers
基金 武器装备预研基金资助项目(2011DA090002C090002)
关键词 双阈值运动区域分割 AdaBoost学习算法 Haar-like弱矩形特征 强分类器 dual-threshold motion area segmentation AdaBoost learning algorithm Haar-like weak, rectangle features strongclassifier
  • 相关文献

参考文献14

  • 1DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [ C ] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC : IEEE Computer Society, 2005: 886-893. 被引量:1
  • 2VIOLA P, JONES M J,SNOW D. Detecting pedestrians using patterns of motion an<! appearanc e [ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Hingham, MA: Kluwer Aca-demic, 2003 : 734-741. 被引量:1
  • 3BO Wu, NKVATIA R. Simultaneous oliject detection and segmentation by boosting local shape feature based classifier [ C ]//Proi* of IEEE Conference on Computer Vision and Pattern Recognition. [S. 1. ]:IEEE,2007: 1-8. 被引量:1
  • 4SABZMEYDAN1 P, MORI G. Detecting pedestrians by learning shapelet features[ C ] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2007 : 1 -8. 被引量:1
  • 5BO Wu, NEVATIA R. Detection of multiple, partially occluded humans in a single image by Bayesian romhination of edgelet part detec-tors[C]//Pro(.' of the 10th IEEK International Conference on Computer Vision. Washington DC:IEEE Computer Society,2005 :90-97. 被引量:1
  • 6BO Wu, NEVATIA H, YUAN Li. Segmentation of multiple, partiallyoccluded objects by grouping, merging, assigning part detection responses [C ] //Proc of IEEE Conference on Computer Vision and Pattern Keoognition. Washington DC : IEKK Computer Society,2009 : 185 -204. 被引量:1
  • 7ZHU Qiang, YEH Mei-Chen,CHENG Kwang-ting,ei al. Fast human detection using a cascade of histograms of oriented gradients [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC : IEEE Computer Society, 2006 ; 1491-1498. 被引量:1
  • 8常好丽,史忠科.基于单目视觉的运动行人检测与跟踪方法[J].交通运输工程学报,2006,6(2):55-59. 被引量:12
  • 9GUI-TE S,MA SOUI) O,MARTIN H F K, al. Detection and classification of vehicles [ J ]. IEEE Trans on Intelligent Transportation Systems, 2002,⑶:37 - 47. 被引量:1
  • 10袁基炜,史忠科.一种快速运动目标的背景提取算法[J].计算机应用研究,2004,21(8):128-129. 被引量:15

二级参考文献37

共引文献44

同被引文献39

  • 1赵善龙,刘明勇.图像二值化时阈值自适应选取方法及其Visual C++实现[J].哈尔滨铁道科技,2006(1):8-10. 被引量:5
  • 2涂宏斌,周新建.基于支持向量机的轴承表面缺陷检测[J].现代制造工程,2006(9):90-92. 被引量:9
  • 3JORGE S. Maroues. Automatic Tracking Of Muhiph Ptde- strians With Group For Mation And Occlusions [ J ]. IEEE PAMI,2010(31 ) :210-227. 被引量:1
  • 4HOFFMAN R,JAIN A K. Segmentation and classification of range images[J]. Pattern Analysis and Machine Intel- ligence, IEEE Transactions on, 1987 ( 5 ) : 608-620. 被引量:1
  • 5LEIBE B, SEEMANN E, SCHIELE B. Pedestrian detection in crowded scenes [ C ]//2005 IEEE Computer Society Computer Vision and Pattern Recognition. San Diego, USA : IEEE Press ,2005:878-885. 被引量:1
  • 6BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32. 被引量:1
  • 7BREIMAN L.Bagging predictors[J].Machine Learing,1996,24(2):123-140. 被引量:1
  • 8DIETTERICH T G.An expermental comparison of three methods for constructing ensembles of decision.trees:bagging,boosting and randomization[J].Machine Learning,2002,40(2):139-157. 被引量:1
  • 9DALAL N,TRIGS B.Histograms of oriented gradients for human detection[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,New York:IEEE,New York:IEEE,2005:886-893. 被引量:1
  • 10OTSU N. A threshold selection method from gray-level histo- gram [J]. IEEE Transactions on Systems, Man and Cybemetics, 1979, 9 (1): 62-66. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部