期刊文献+

几个具体的三角范畴

Some specific triangulated categories
原文传递
导出
摘要 本文利用彭提出的用广义复形范畴以及广义复形范畴之间的锥扩张来构造三角范畴的方法,考虑了几类特殊的三角范畴,确定了这几类三角范畴的所有不可分解对象和它们的具体形式,并给出了它们的Auslander-Reiten箭图的结构.这些三角范畴提供了一些轨道范畴的一种新的实现. Peng proposed two methods to construct triangulated categories from generalized chain com- plex categories and functors between them. In this paper, the author uses these methods to consider some specific triangulated categories, determines all the indecomposable objects of the triangulated cate- gories and their concrete forms. Then, the author draws their Auslander-Reiten quivers. From these Auslander-Reiten quivers one can see that they also provide a new kind of realization for the orbit categories of some triangulated categories.
作者 赵小娟
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期728-734,共7页 Journal of Sichuan University(Natural Science Edition)
关键词 三角范畴 同伦范畴锥扩张 Auslander-Reiten箭图 triangulated category, conical extension of homotopy categories, Auslander-Reiten quiver
  • 相关文献

参考文献19

  • 1Verdier J L. Categories d6riv6es [M]. Berlin: Springer, 1977. 被引量:1
  • 2Happel D. Triangulated categories in the representa- tion theory of finite-dimensional algebras[M]. Lon- don: Cambridge University Press, 1988. 被引量:1
  • 3Keller B. On triangulated orbit categories[J]. Doc Math, 2005, 10: 551. 被引量:1
  • 4Buan A B, Marsh R J, Reineke M, et al. Tilting the- ory and cluster eombinatorics[J]. Adv Math, 2006, 204: 572. 被引量:1
  • 5马洪芹,耿圣飞.d-Cluster范畴的Grothendieck群[J].四川大学学报(自然科学版),2011,48(2):299-302. 被引量:3
  • 6Xiao j, Zhu B. Locally finite triangulated categories [J].J Algebra, 2005, 290: 473. 被引量:1
  • 7Amiot C. On the structure of triangulated categories with finitely many indeeomposables[EB/OL], arXiv: math/0612141v2 [math. CT]12 Jan 2007. 被引量:1
  • 8Peng L G. Conical extensions of derived categories [R]. Torufi: XII International Conference on Repre- sentations of Algebras and Workshop, 2007. 被引量:1
  • 9Weibel C A. An introduction to homological algebra [M]. Beijing: China Machine Press, 2004. 被引量:1
  • 10Auslander M, Reiten I, Smal~S O. Representation theory of artin algeras [M]. London: Cambrige University Press, 1995. 被引量:1

二级参考文献20

  • 1Fomin S, Zelevinsky A. Cluster algebra I : Foundations [J]. J Amer Math Soe, 2002, 15,(2): 497. 被引量:1
  • 2Fomin S, Zelevinsky A. Cluster algebra Ⅱ : Finitetype classification [J]. Invent Math, 2003, 154: 63. 被引量:1
  • 3Buan A, Marsh R, Reineke M. Tilting theory and cluster combinatorics [J]. Adv Math, 2006, 204: 572. 被引量:1
  • 4Buan A, Marsh R. Cluster-tilting theory [C] // Peria J I, Bautista R. Trends in Representation Theory of Algebras and Related Topics. Providence, RI:Amer Math Soc, 2006.1. 被引量:1
  • 5Rieten I. Tilting theory and cluster algebras [J]. Preprint,. 被引量:1
  • 6RingeI M C. Some remarks concerning tilting mod-ules and tilted algebras. Origin. Relevance. Future. An appendix to the Handbook of tilting theory,edited by Lidia Angeleri-Hugel, Dieter Happel and Henning Krause [ M ]. Cambridge: Cambridge University Press, 2007. 被引量:1
  • 7Keller B. Triangulated orbit categories [J]. Documenta Math, 2005, 10: 551. 被引量:1
  • 8Barot M, Kussin D, Lenzing H. The grothendieck group of a cluster category[J]. J Pure Applied Algebra, 2008, 212: 33. 被引量:1
  • 9Hanppel D. Triangulated categories in the representation theory of finite dimensional algebras IMP. Cambridge: Cambridge University Press, 1988. 被引量:1
  • 10Xiao J, Zhu B. Relations for the grothendieck groups of triangulated category [J]. J Algebra, 2002, 257: 37. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部