期刊文献+

两种治疗计划系统三种算法对EDW模型准确性比较 被引量:1

Accuracy comparison of enhanced dynamic wedge modles among Pinnacle3 9. 0 ACA and Eclipse7.3AAA, PBC algorithm
原文传递
导出
摘要 目的用扩充型动态楔形板(EDW)模型比较Pinnacle^39.0治疗计划系统(TPS)的ACA算法和Eclipse7.3TPS的AAA、PBC算法的准确性。方法对瓦里安21EX6MVX线不同射野的EDW楔形因子(wF)进行实际测量和绘制二维剂量分布曲线,与2种TPS3种算法的计算结果进行相对误差和最大偏差比较。叮通过率分析平面剂量强度分布。结果对称野wF的ACA算法相对误差<2.8%,AAA算法的<1.0%,PBC算法的<1.2%;非对称野wF的ACA算法相对误差高达19.4%,AAA算法的<2.0%,PBC算法的<3.0%。楔形方向所有射野ACA算法最大偏差为3.0%,AAA算法的为2.7%,PBC算法的为4.0%。对称野3种算法的通过率>87%,在去除半影区后>96%;非对称野的>85%,在去除半影区后达95%。结论AAA、PBC算法对于对称和非对称野准确度均能满足临床需要,而ACA算法在非对称野条件下wF误差偏大,在实际临床中应尽量避免使用。 Objective To compare the accuracy of enhanced dynamic wedge (EDW) models of adaptive convolution algorithm (ACA) in Pinnacle3 9.0 and anisotropic analytical algorithm ( AAA), and pencil beam convolution (PBC) algorithms in Eclipse7. 3 treatment planning systems (TPS). Methods To evaluate the accuracy of the three algorithm models, we compared actual measurement values with TPS calculation values of EDW wedge factors under for different fields in which Varian-21EX 6 MV X-ray was applied, and also compared the actual dose distribution profile with that of TPS. Results The deviations of EDW wedge factors of symmetry fields and asymmetric fields are within 2. 8% and 19.4% for ACA in Pinnacle3 9. 0. Meanwhile, the deviations are 1.0% and 2.0% for AAA, 1.2% and 3.0% for PBC in Eclipse7.3. The deviations between measurement and calculation of all fields' profile for ACA is within 3% and within 2. 7% for AAA within 4. 0% for PBC in wedge direction. For the dose distributions, we evaluated the pass rates of three algorithms using gamma analysis. The gamma pass rates among all the three algorithms in symmetry and asymmetric fields are above 87% and 85% respectively. After the removal of the penumbra zone, the pass rates among all the three algorithms are above 96% in symmetry fields, and above 95% in asymmetric fields, respectively. Conclusions AAA and PBC algorithms in symmetric and asymmetric fields can meet the need of clinical applications. While, wedge factor of ACA should not be used in clinical due to its greater error in asymmetric fields.
出处 《中华放射肿瘤学杂志》 CSCD 北大核心 2012年第5期468-470,共3页 Chinese Journal of Radiation Oncology
关键词 治疗计划系统 楔形因子 扩充型动态楔形板模型 Treatment planning systems Wedge factor Enhanced dynamic wedge model
  • 相关文献

参考文献8

  • 1胡逸民.X(1)射线射野剂量学//胡逸民.肿瘤放射物理学.北京:原子能出版社,1999:187. 被引量:1
  • 2善国平,严英师,徐明清,等.楔形板对加速器高能x射线的影响的分析.中华放射肿瘤学杂志,1999,8:242. 被引量:1
  • 3胡杰,陶建民,张莹,孙光荣,龚卿,陈伟祥.楔形滤片对X射线辐射质的影响[J].中国医学物理学杂志,1999,16(2):67-69. 被引量:8
  • 4Yua MK. Analytical representation of enhanced dynamic wedge factors or symmetric and asymmetric photon fields. Med Phys, 2002,29:2606-2610. 被引量:1
  • 5Liu C, Li Z, Paha JR. Characterizing output for the Varian enhanced dynamic wedge field. Med Phys,1998,25:64-70. 被引量:1
  • 6Anjum MN, Qadir A, Afzal M. Dosimetric evaluation of a treatment planning system using pencil beam convolution algorithm for enhanced dynamic wedges with symmetric and asymmetric fields. J Radiat Res,2008,5 : 169-174. 被引量:1
  • 7Liu HH, McCullough EC, Mackie TR. Calculating dose distributions and wedge factors for photon treatment fields with dynamic wedges based on a convolution/superposition method. Med Phw lqq8 25.56-63. 被引量:1
  • 8Caprile PF, Venencia CD, Besa P. Comparison between measured and calculated dynamic wedge dose distributions using the anisotropic analytic algorithm and pencil-beam convolution. J Appl Clin Med Phys,2006,8:47-54. 被引量:1

二级参考文献1

  • 1复旦大学,原子核物理实验方法,1981年,58页 被引量:1

共引文献7

同被引文献14

  • 1Edlund TL.Treatment planning of oblique wedge fields comparingenhanced dynamic wedge and standard 60 degree wedge for parotidtype treatments[J].Med Dosim, 1997, 22(3):197-9. 被引量:1
  • 2Warlick WB, O'rear JH, Earley L, et al.Dose to the contralateralbreast:a comparison of two techniques using the enhanced dynamicwedge versus a standard wedge[J].Med Dosim, 1997, 22(3):185-91. 被引量:1
  • 3Prado KL, Kirsner SM, Kudchadker RJ, et al.Enhanced dynamicwedge factors at off-axis points in asymmetric fields[J].J Appl ClinMed Phys, 2003, 4(1):75-84. 被引量:1
  • 4Kuperman VY.Analytical representation for varian EDW factors atoff-center points[J].Med Phys, 2005, 32(5):1256-61. 被引量:1
  • 5Liu C, Li Z, Palta JR.Characterizing output for the Varian enhanceddynamic wedge field[J].Med Phys, 1998, 25(1):64-70. 被引量:1
  • 6Gibbons JP.Calculation of enhanced dynamic wedge factors forsymmetric and asymmetric photon fields[J].Med Phys, 1998, 25(8):1411-8. 被引量:1
  • 7Yu MK.Analytical representation of enhanced dynamic wedgefactors for symmetric and asymmetric photon fields[J].Med Phys,2002, 29(11):2606-10. 被引量:1
  • 8Liu C, Kim S, Kahler DL, et al.Generalized monitor unit calculationfor the Varian enhanced dynamic wedge field[J].Med Phys,2003, 30(7):1891-6. 被引量:1
  • 9Varian Medical System, Inc.C-Series clinac:Enhanced dynamicwedge implementation guide[M].Palo Alto (CA):OncologySystem/Delivery Systems; 2006. 被引量:1
  • 10Petti PL, Siddon RL.Effective wedge angles with a Universal wedge[J].Phys Med Biol, 1985, 30(9):985-91. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部