期刊文献+

乒乓球竞赛发球与接发球博弈的混合策略纳什均衡研究 被引量:12

Study on the Mixed Strategy Nash Equilibrium in the Game of "Serve-Serve Reception" in Table Tennis Competition
原文传递
导出
摘要 纳什均衡是博弈理论最为核心的概念,采用文献资料、专家访谈、录像观察等研究方法对乒乓球战术行为中的"混合策略纳什均衡"进行了研究,研究得出:乒乓球战术行为博弈的"混合策略"是纯策略的概率组合,混合策略是连续策略的一种特例。最优反应分析能够用来求解乒乓球战术行为博弈的混合策略均衡,在运动实践中乒乓球运动员(博弈方)博弈过程中都存在各自的最优反应规则,并能够根据这一规则构建最优反映曲线,最终得出乒乓球战术行为混合策略纳什均衡解。乒乓球战术行为中"混合策略"的重要性在于揭示了博弈双方也就是乒乓球运动员一定不能使自己的战术行为表现出很强的规律性,因为一旦被对手发觉那么就将处于劣势状态。 Nash Equilibrium is the core concept of game theory.Video observation,interview and literature were used to study the mixed strategy Nash Equilibrium in the tactical behavior of the table tennis game.The results are as below:As the mixed strategy game,the table tennis tactic behavior game is the probabilistic combination of pure strategies.Mixed strategy is a special case of continuous strategy. The optimal reaction analysis can be used to solve the mixed strategy Nash Equilibrium in the tactical behavior of the table tennis game.Table tennis players in sports practice represents the respective optimum reaction rule in the game process,which builds the optimum curve reflect the behavior of table tennis tactics mixed strategy Nash Equilibrium solution.The importance of mixed strategy Nash Equilibrium in the tactical behavior of the table tennis game lies in the strategy that once the player shows a strong regularity,the opponents can easily find the rule and will be at a disadvantage status.
出处 《北京体育大学学报》 CSSCI 北大核心 2012年第8期134-138,共5页 Journal of Beijing Sport University
基金 北京体育大学博士学位论文
关键词 乒乓球 发球 接发球 博弈论 混合策略纳什均衡 table tennis serve serve reception game theory mixed strategy Nash Equilibrium
  • 相关文献

参考文献14

  • 1Nash.J.F. Equilibrium Points in n- Person Games[ M]. Proceedings of the National Academy of Sciences, 1950, 36:48 - 49. 被引量:1
  • 2(美)纳什(Nash.J.F),张良桥,王晓刚译.纳什博弈论论文集[M].北京:首都经贸大学出版社,2000,11:11-13. 被引量:1
  • 3Harsanyi, J. Games with Randomly Distributed Payoffs: A New Rationale for Mixed Strategy Equilibrium Points[J]. International Journal of Game Theory, 1973,2:1 - 23. 被引量:1
  • 4张维迎著..博弈论与信息经济学[M].上海:上海人民出版社;上海,2004:364.
  • 5迪克西特·斯克丝著,蒲勇健等译.策略博弈(第二版)[M].北京:中国人民大学出版社,2009,1:68-74. 被引量:1
  • 6Richard McKelvey, Andrew McLennan. Computation of equilibria in finite games[M]. Handbook of Computational Economics, 1996:87 - 142. 被引量:1
  • 7Richard McKelvey, Tom Palfrey. Quantal response equilibria for normal form games[J]. Games and Economic Behavior, 1995,10:6 - 38. 被引量:1
  • 8John Harsanyi. Games of Incomplete Information Played By Bayesian Players II [M]. Management Science, 1967, 14 : 320 - 334. 被引量:1
  • 9Mayberry, John P., John C, Harsanyi, Reinhard Selten. Game- Theoretic Models of Conflict and Cooperation[J]. Boulder, Colo. : West view, 1992. 被引量:1
  • 10罗云峰主编..博弈论教程[M].北京:北京交通大学出版社,2007:351.

同被引文献97

引证文献12

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部