期刊文献+

一类渗流模型弱解的唯一性

The Uniqueness of the Weak Solution of the Infiltration Model
下载PDF
导出
摘要 对三维渗流方程θ(ψ(x,y,z,t))t=div[k(ψ(x,y,z,t))▽ψ(x,y,z,t)]-(k(ψ(x,y,z,t)))z作变换化为(A(u))t=Δu-(k(u))z,通过构造一个特殊的检验函数,用反证法证明了三维渗流数学模型(I)弱解的唯一性. The three - dimensional infiltration equation θ( ψ(x,y,z, t) ), = div [ k (ψ (x, y,z, t) ) △↓ψ ( x,y,z, t) ] - ( k ( ψ ( x, y,z, t) ) )z was transformed into (A (u) ), = △u - ( k (u) ) s- By constructing a special test function, the u- niqueness of the weak solution of this model was proved with reduction to absurdity.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2012年第3期28-31,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11071083) 广东高校优秀青年创新人才培养计划项目(粤财教[2008]350号)
关键词 渗流模型 弱解 唯一性 反证法 infiltration model weak solution uniqueness reduction to absurdity
  • 相关文献

参考文献7

  • 1OLEINIK O A, KALASNIKOV A S, CZOU Yui - lin. The cauchy problem and boundary problem for equations of the type of non - stationary fiheration [J].Izv Akad Nauk Sssr Ser, 1958,22:667 - 704. 被引量:1
  • 2XIAO Shutie, HUANG Zhida, ZHOU Chuanzhong. The infiltration problem with constant rate in partially saturated porous media[J]. Acta Math Appl Sinica, 1984, 1 (2) : 108 - 126. 被引量:1
  • 3XIAO Shutie, HUANG Zhida. One dimensional filtration problem in partially saturated porous media [J ]. Acta Math Appl Sinica, 1996,12(4) :418 - 426. 被引量:1
  • 4ZHANG Daowen. The propagating speed problem of solutions to the filtration equation in N - dimensional porous medium [ D ]. Beijing: Peking University, 1986. 被引量:1
  • 5方平,周裕中,张昕,宋瑞凤.一类渗流模型弱解的存在性[J].江西师范大学学报(自然科学版),2009,33(4):467-470. 被引量:1
  • 6GILDING B H. A nonlinear degenerat parablic equations [J]. Anali Della Scuo Nor Sup Di Pisa, 1977,4:393 - 432. 被引量:1
  • 7LADYZHENSKAJA O A, SOLONNIKOV V A, URAL' CEVA N N. Linear and quasilinear equations of parabolic type [ M ]. Providence : American Mathematical Society, 1968. 被引量:1

二级参考文献11

  • 1Xiao Shu-tie, Huang: Zhi-da,Zhou Chuan-zhong. The infiltration problem with constant rate in partially saturated porous media[ J]. Actra Math Appl Sinica, 1984,1 (2) : 108-126. 被引量:1
  • 2Oleinik O A, Kalasnikov A S, Czou Yui-lin. The Cauchy problem and boundary problem for equations of the type of non-stationary filteration[ J]. Izv Akad Nauk SSSR Ser,1958,22:667 -704. 被引量:1
  • 3Sabenina E S. On the Cauchy problem for the equation of nonstationary gas filtration in several space variable[J]. Dokl Akad Nauk SSSR, 1961,136 : 1034-1037. 被引量:1
  • 4Aronson D G. Regularity properties of flows through porous media [ J ]. SIAM J Appl Math, 1969,17:461-467. 被引量:1
  • 5Su Ning, Li Jian-gou. The boundary value problem for the filtration equation in partially saturated porous media[ J ], Acta Math Appl Sinica, 1984,1 (2) : 180-192. 被引量:1
  • 6Wang Shu-qiao. Support of weak solution of the filtration equation in one dimension [ J ]. Acta Math Appl Sinica, 1983,26 (2) :t99- 219. 被引量:1
  • 7Alt H W, Luckhaus S. Quasilinear elliptic-parabolic differential equations [ J ]. Math Z, 1983,183:311-341. 被引量:1
  • 8Peletier L A. A necessary and sufficient condition for existence of an interface in flows through porous media[ J ]. Arch Rat Mech Anal, 1974,56:183-190. 被引量:1
  • 9An Liangjun. The infiltration problem with large conatant surface flux in partially saturated porous media[J]. Acta Math Appl Sinica, 1985,2(4) :332-345. 被引量:1
  • 10Kalasnikov A S. On the differential properties of generallized solutions of equations of the nonsteadystate fdtration type[ ] ]. Vest Mosk univ Math, 1974,29:62-68. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部