期刊文献+

采用局部相位的Nonlocal低剂量CT图像去噪 被引量:2

Denoising of Nonlocal low dose CT images based on local phase
原文传递
导出
摘要 通过引入局部相位特征,提出了一种新的基于NL-means的低剂量CT图像去噪算法.在非局部滤波器中引入局部相位,设计新的图像子块相似性测度函数,用于低剂量CT图像的去噪.通过与其他4种流行的去噪算法进行模拟图像数值比较,并对真实图像去噪进行临床评价,结果表明:所提出的方法在对低剂量CT图像去除噪声的同时,能保留具有重要诊断价值的CT图像特征,如边界、囊肿区及低密度区等.量化及临床实验结果表明所提出的算法能有效地滤除低剂量CT图像中的噪声并保留图像中有用的诊断信息. By introducing local phase feature,an enhanced Nonlocal(NL)-means algorithm for noise reduction in low dose computed tomography(LDCT)images was proposed.The similarity measure in NL-means was modified such that neighborhoods with similar phase response receive a larger weight.Compared with four other denoising methods,superior performance was shown in experiments carried out on synthetic images and better restoration of disease features(edges,cystic areas,low-density areas,etc.)was concluded in clinically visual comparisons on real LDCT images.Both quantitative results and clinical evaluation validate good performances of the proposed method in denoising and preserving structural information of LDCT images.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期42-46,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金重点资助项目(61031003) 国家自然科学基金资助项目(61031003) 广东省省部产学研结合项目(2011B090400059) 2011年深圳市基础研究项目(JCY20110047)
关键词 CT图像 图像去噪 非局部方法 局部相位 测度函数 computed tomography(CT)images image denoising Nonlocal-means local phase measure function
  • 相关文献

参考文献11

  • 1Pierce D A,Preston D L.Radiation-related cancerrisks at low doses among atomic bomb survivors[J].Radiat Res,2000,154:178-186. 被引量:1
  • 2Mannudeep K,Michael M M.Strategies for CT radi-ation dose optimization[J].Radiology,2004,230:619-628. 被引量:1
  • 3Elbakri I A,Fessler J A.Statistical image recon-struction for polyenergetic X-ray computed tomo-graphy[J].IEEE Trans Med Imag,2002,21(2):88-99. 被引量:1
  • 4牛彦敏,马燕,王旭初.非下采样Contourlet域中基于改进隐马尔可夫树的低剂量CT图像去噪[J].激光与光电子学进展,2009,46(12):115-119. 被引量:3
  • 5Wessling J,Esseling R,Raupach R,et al.The effectof dose reduction and feasibility of edge-preservingnoise reduction on the detection of liver lesions usingMSCT[J].Eur Radiol,2007,17:1885-1891. 被引量:1
  • 6Buades A,Coll B,Morel J M.A review of image de-noising algorithms,with a new one[J].MultiscaleModel Simul,2005,4(2):490-530. 被引量:1
  • 7Morrone O.Feature detection from local energy[J].Pattern Recognition Letters,1987,6(5):303-313. 被引量:1
  • 8Michael F,Gerald S.The monogenic signal[J].IEEE Transactions on Signal Processing,2001,49(12):3136-3144. 被引量:1
  • 9Matthew M,Michael B.Phase mutual information asa similarity measure for registration[J].Medical Im-age Analysis,2005,9(44):330-343. 被引量:1
  • 10Zhu M,Wright S J,Chan T F.Duality-based algo-rithms for total-variation-regularized image restora-tion[J].J Comput Optim Appl,2010,47(3):377-400. 被引量:1

二级参考文献8

  • 1D. Naidich, C. Marshall, C. Gribbin et al.. Low-dose CT of the lungs: preliminary observations [J]. Radiology, 1990, 178 (3): 729-731. 被引量:1
  • 2A. M. R. Schilham, B. v. Ginneken, H. A. Gietema et al.. Local noise weighted filtering for emphysema scoring of lowdose CT images[J]. IEEE Trans. Med. Imaging, 2006, 25(4): 451-463. 被引量:1
  • 3M. N. Do, M. Vetterli. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Trans. Image Process, 2005, 14(12): 2091-2106. 被引量:1
  • 4A. L. d. Cunha, J. Zhou, M. N. Do. The nonsubsampled contourlet transform: theory, design, and applications [J]. IEEE Trans. Image Process, 2006, 15(10): 3089-3101. 被引量:1
  • 5E. Cand'es, L. Demanet, D. Donoho et al.. Fast discrete curvelet transforms [R]. Pasadena, CA: California Institute of Technology, 2005. 被引量:1
  • 6Z. Qiang, G. Bao-long. Multifocus image fusion using the nonsubsampled contourlet transform [J]. Signal Process, 2009, 89(7): 1334-1346. 被引量:1
  • 7M. S. Crouse, R. D. Nowak, R. G. Baraniuk. Wavelet-based statistical signal processing using hidden Markov models[J]. IEEE Trans. Signal Process, 1998, 46(4): 886-902. 被引量:1
  • 8D.D. -Y. Po, M. N. Do. Directional multiscale modeling of images using the contourlet transform [J]. IEEE Trans Image Process, 2006, 15(6): 1610-1620. 被引量:1

共引文献2

同被引文献8

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部