期刊文献+

利用岩石断裂强度来估算地下岩体水平应力的范围 被引量:5

EVALUATION OF RANGE OF HORIZONTAL STRESSES OF UNDERGROUND ROCK MASS BY USING ROCK FRACTURE STRENGTH
下载PDF
导出
摘要 地下岩体的垂直应力一般可用其上部覆盖岩体的平均比重乘以其深度来估算,但是水平应力却很难估算。基于岩石断裂韧度是一个常数,利用共线裂纹模型建立裂隙岩体的稳定条件,并应用该稳定条件来估算水平应力的范围。估算结果符合现场的测试结果,表明这一估算方法是有效的、可行的。利用该裂隙岩体稳定条件能很好地解释水平应力与垂直应力之比在浅部地壳中分布在较宽的范围内,但在深部区域内却分布在一个狭小的范围内这一现象。 The vertical stress of underground rock mass can be evaluated by depth times the average unit weight of overlying rock mass. However, horizontal stress is difficult to estimate. Based on the fact that rock fracture toughness is a constant, two-collinear crack model is applied to establish the stability condition of fractured rock mass. From this stability condition, the range of horizontal stress can be evaluated: and the evaluation result agrees well with in-situ measurement results, so that indicating the evaluation method is effective and feasible. Through the stability condition of fractured rock mass, we can well explain the phenomenon that the ratio of horizontal stress to vertical stress in shallow zone is scattered in a wide range: but in deep zone, it is scatted in a narrow range.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2012年第8期1721-1728,共8页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(51074109) 国家重点基础研究发展计划(973)项目(2010CB732005) 教育部科研创新团队(IRT1027)
关键词 岩石力学 水平应力 应力强度因子 裂纹 地下岩体 rock mechanics horizontal stress stress intensity factor crack underground rock mass.
  • 相关文献

参考文献31

  • 1HOEK E, BROWN E T. Underground Excavations in Rock[M] London, UK.. The Institution of Mining and Metallurgy, 1980: 93 - 101. 被引量:1
  • 2ROMAN D C, MORAN S C, POWER JA, et al. Temporal and spatial variation of local stress fields before and after the 1992 eruptions of Crater Peak vent, Mount Spurr volcano, Alaska[J]. Bulletin of the Seismological Society of American, 2004, 94.. 2 366 - 2 379. 被引量:1
  • 3BOHNHOFF M, GROSSER H. DRESEN G Strain partitioning and stress rotation at the North Anatolian fault zone from aftershock focal mechanisms of the 1999 Izmit Mw= 7.4 earthquake[J]. Geophysical Journal International, 2006, 166(1): 373 - 385. 被引量:1
  • 4HElM A. Zur Frage der Gebirgs~d Gesteinsfestigkeit[R]. Schweiz, Battztg: [s. n.], 1912.(inFrench). 被引量:1
  • 5KARL T, RICHART F E. Stresses in rock about cavities[J]. Geotechnique, 1952, 3(2): 57-90. 被引量:1
  • 6TALOBRE J. Rock mechanics[M]. Dunod, Paris: Cambridge University Press, 1957: 120-225. 被引量:1
  • 7HOOKER V E, BICKEL D L, AGGSON J R. In-situ determination of stresses in mountainous topography[R]. [S.l.]: United States Bureau of Mines Reports of Investigations, 1972. 被引量:1
  • 8HARDEBECK J L, MICHAELA J. Stress orientations at intermediate angles to the San Andreas fault, California[J]. Journal of Geophysical Research, 2004, 109: B11303. doi: 10.1029/2004JB003239. 被引量:1
  • 9TOWNEND J, ZOBACK M D. Stress, Strain, and mountain building in central Japan[J]. Journal of Geophysical Research, 2006, 111 B03411. doi: 10.1029/2005JB003759. 被引量:1
  • 10TOWNEND J. What do faults feel? Observational constraints on the stress acting on seismogenic faults[M]//ABERCROMBIE R, MCGARR A, KANAMORI H, et al ed. Earthquakes: Radiated Energy and Physics of faulting. Washington: American Geophysical Unioa(AGU) 2006:313 - 327. 被引量:1

二级参考文献25

  • 1[1]Zhu Zheming.New biaxial failure criterion for brittle materials in compression[J].J Engng Mech,ASCE,1999,125:1251-1258. 被引量:1
  • 2[2]Zhu Zheming,Wang L,Mohanty B,et al.Stress intensity factor for a cracked specimen under compression[J].Engng Fract Mech,2006,73:482-489. 被引量:1
  • 3[3]Zhu Zheming,Ji S,Xie H.An improved method of collocation for the problem of crack surface subjected to uniform load[J].Engng Fracture Mech,1996,54:731-741. 被引量:1
  • 4[4]Zhu Zheming,Xie H,Ji S.The mixed boundary problems for a mixed mode crack in a finite plate[J].Engng Fract Mech,1997,56:647-655. 被引量:1
  • 5[7]Nemat-Nasser S,Horii H.Compression-induced nonplanar crack extension with application to splitting,exfoliation,and rockbust[J].J of Geophys Res,1982,87(B8):6805-6821. 被引量:1
  • 6[8]Steif P S.Crack extension under compressive loading[J].Engng Fract Mech,1984,20:463-473. 被引量:1
  • 7[9]Ashby M F,Hallam S D.The failure of brittle solids containing small cracks under compressive stress states[J].Acta Metall,1986,34:497-510. 被引量:1
  • 8[10]Li C,Nordlund E.Deformation of brittle rocks under compression with particular reference to microcracks[J].Mech Mater,1993,15:223-239. 被引量:1
  • 9[11]Germanovich L N,Salganik R L,Dyskin A V,et al.Mechanisms of brittle fracture of rock with pre-existing cracks in compression[J].Phgeoph,1994,143:117-147. 被引量:1
  • 10[12]Baud P,Reuschle T,Charleg P.An improved wing crack model for the deformation and failure of rock in compression[J].Int J Rock Mech Min Sci Geomech,1996,33:539-542. 被引量:1

共引文献13

同被引文献72

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部