期刊文献+

改进的均值漂移算法在运动目标跟踪中的研究 被引量:6

Research of Improved Mean Shift Algorithm in Moving Object Tracking
下载PDF
导出
摘要 以智能交通系统中运动目标跟踪为背景,研究采用均值漂移算法,实现对快速移动的单目标事物准确实时跟踪。首先,分析了均值漂移算法的基本原理。其次,分析了均值漂移算法在目标跟踪中存在的问题及解决方法:针对目标遮挡情况下目标跟踪的准确性问题,采用将均值漂移算法与卡尔曼滤波算法相结合的自适应均值漂移目标跟踪算法;针对大小不变的带宽窗口可能导致跟踪丢失的问题,采用了自动调节带宽窗口的方法。最后进行了仿真实验。 Fast moving object was accurately tracked based on the intelligent transportation system. Firstly, the principle of mean shift algorithm was analyzed. Then, the mean shift algorithm in target tracking problems and solutions were analyzed: target under occlusion tracking accuracy, the mean shift algorithm and Kalman algorithm combining adaptive mean shift tracking algorithm; size constant bandwidth window leading to loss of tracking problem; automatic adjusting the bandwidth of the window method. Finally, through the simulation experiments, the tracking effects were compared.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第9期1896-1899,共4页 Journal of System Simulation
基金 河北省自然基金(F2012208004)
关键词 均值漂移 目标跟踪 智能交通 卡尔曼滤波 mean shift object tracking intelligent transportation Kalman
  • 相关文献

参考文献13

  • 1郭玮,晋艳艳.智能交通在各国现状以及我国智能交通的发展趋势[J].科技传播,2009,1(5):41-42. 被引量:15
  • 2Y Z Cheng. Mean shift, Mode Seeking, and Clustering [J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1995, 17(8): 790-799. 被引量:1
  • 3Comaniciu D, P Meer. Mean shift: A Robust application toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2002, 24(5): 603-619. 被引量:1
  • 4Comaniciu D, V Ramesh, P Meer. Kernel-based object tracking [J]. IEEE Transactions on Pattem Analysis and Machine Intelligence (S0162-8828), 2003, 25(2): 564-577. 被引量:1
  • 5K Nummiaro, E Koller-Meier, L Van Gool. An adaptive color-basedparticle filier [J]. Image and Vision Computing (S0262-8856), 2003, 21(1): 99-110. 被引量:1
  • 6R T Collins. Mean shift Blob Tracking through Scale Space [C]// Proc. of the IEEE CS Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2003: 234-240. 被引量:1
  • 7Junseok Kwon, Kyoung Mu Lee. Tracking of a Non-Rigid Object via Patch-based Dynamic Appearance Modeling and Adaptive Basin Hopping Monte Carlo Sampling. [C]// CVPR, 2009. USA: IEEE, 2009: 1208-1215. 被引量:1
  • 8D Ross, J Lim, R Lin, M Yang. Incremental learning for robust visual tracking [J]. IJCV (S1864-1385), 2008, 77(1-3): 125-141. 被引量:1
  • 9詹建平..城区交通场景中运动目标视觉跟踪方法研究[D].重庆大学,2010:
  • 10陈远..复杂场景中视觉运动目标检测与跟踪[D].华中科技大学,2008:

二级参考文献22

  • 1金会庆,陈嵘,张树林.机动车驾驶员的速度估计、复杂反应判断和操纵机能特征研究[J].人类工效学,1995,1(1):13-18. 被引量:23
  • 2[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40. 被引量:1
  • 3[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799. 被引量:1
  • 4[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149. 被引量:1
  • 5[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635. 被引量:1
  • 6[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219. 被引量:1
  • 7[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575. 被引量:1
  • 8[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240. 被引量:1
  • 9[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857. 被引量:1
  • 10[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245. 被引量:1

共引文献183

同被引文献43

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部