期刊文献+

带修复操作整型编码遗传算法求解大规模机组组合问题 被引量:4

Integer-coded genetic algorithm with novel repairing mechanism for large scale unit-commitment problem
下载PDF
导出
摘要 针对发电机组组合调度问题,提出了一种带修复操作的整型编码遗传算法(r-ICGA)。算法采用整数串的编码方式,有效减小了染色体的长度。同时引入一组新的修复操作来处理约束,将进化过程中产生的新个体修复成为可行个体。与罚函数约束处理方法相比,所提算法不引入惩罚项,避免了针对不可行解的经济负载分配子问题求解,节省了大量计算时间。将所提方法应用于六种不同规模的机组组合问题,仿真结果表明算法的搜索效率更高,求得的调度结果更好。随机组规模增大,算法所需执行时间近似线性地平缓增长,表明r-ICGA算法比其他方法更适合于求解大规模机组组合调度问题。 An approach to solving large scale unit-commitment(UC)problem based on integer-coded genetic algorithm(GA)with novel repairing mechanism(r-ICGA)is presented.The GA chromosome consists of integer string,which has shorter length than binary string.Using the proposed repairing mechanism,new chromosomes produced in evolution process are repaired to comply with all constraints.As the alternative to penalty function method,the repairing mechanism turns solutions to feasible ones,and avoid coping with economic load dispatch(ELD)sub-problem for infeasible solutions.The algorithm is tested and validated in 6 cases with different scale up to 100 units.The solutions obtained by r-ICGA have lower operating costs,and the algorithm has approximate linear execution time versus unit number.These simulation results indicate that r-ICGA is more appropriate to large scale unit-commitment problem.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第9期2972-2979,共8页 CIESC Journal
基金 国家博士后基金项目(2011M500567)~~
关键词 生产调度 机组组合 遗传算法 整型编码 修复操作 process scheduling; unit-commitment; genetic algorithm; integer-coded; repairing mechanism
  • 相关文献

参考文献16

  • 1Josef KaIlrath. Planning and scheduling in the process industry[J]. ORSpeetrum, 2002, 24 (3): 219-250. 被引量:1
  • 2Wood A J, Wollenberg B F. Power Generation, Operation, and Control [M]. 2nd ed. New York: Wiley, 1996:29-31. 被引量:1
  • 3Kazarlis S A, Bakirtzis A G, Petridis V.A genetic algorithm solution to the unit commitment problem [J]. IEEET. PowerSyst., 1996, 11 (1): 83-92. 被引量:1
  • 4Padhy N P. Unit commitment--a bibliographical survey [J]. IEEE T. Power Syst. , 2004, 19 (2) : 1196-1205. 被引量:1
  • 5Tomonobu Senjyu, Tsukasa Miyagi, Ahmed Yousuf Saber, Naomitsu Urasaki, Toshihisa Funabashi. Emerging solution of large-scale unit commitment problem by Stochastic Priority List[J]. Electric Power Systems Research, 2006, 76 (5): 283-292. 被引量:1
  • 6Snyder W L, Powell H D, Rayburn J C. Dynamic programming approach to unit commitment [J]. IEEE T. PowerSyst., 1987, 2 (2): 339-347. 被引量:1
  • 7Bakiritzis A G, Zoumas D E. Lambda of Lagrangian relaxation solution to unit commitment problem [J]. IEEE Proc. Gener. Transm. Distrib. , 2000, 147 (2): 131-161. 被引量:1
  • 8Damousis I G, Bakirtzis A G, Dopoulos P S. A solution to the unit-commitment problem using integer-coded genetic algorithm [J]. IEEE T. Power. Syst., 2004, 19 (2): 1165-1172. 被引量:1
  • 9Sun L Y, Zhang Y, Jiang C W. A matrix real-coded genetic algorithm to the unit commitment problem[J]. Electric Power Systems Research, 2006, 76 (9) : 716-728. 被引量:1
  • 10Ting T O, Rao M V C, Loo C K. A novel approach for unit commitment problem via an effective hybrid particle swarm optimization [J]. IEEE T. Power. Syst., 2006, 21 (1) :411-418. 被引量:1

二级参考文献19

共引文献18

同被引文献40

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部