期刊文献+

Active Field Canceling System in Next Generation Nano-Fab

Active Field Canceling System in Next Generation Nano-Fab
下载PDF
导出
摘要 ELF (extremely low frequency) magnetic fields from power-line current influence the yield of CMOS foundry. The poor yield happens because of ELF magnetic fields inducing directly the measurement or process equipment for cutting-edge chips below 28 nm process. The equipments of electron microscopes, including SEM (scanning electron microscope), TEM (transmission electron microscopy), STEM (scanning transmission electron microscopy) and EBLS (electron beam lithography system) are very susceptible to ELF magnetic fields emanating from various electrical power sources outside of the building and within next generation CMOS foundry recommends a maximum of 0.3 mG. The active canceling method uses active coils with current sensing field via sensor and inducing man-made electromagnetic field to reduce the stray magnetic field. Unfortunately, the conventional system takes more time to products field because of parasitical capacitance and resistance in long coil. The longer canceling coil the system construct, the more time it takes. Besides, canceling system should spend more time on calibrating non-linear current amplifier through software design. This research designs simpler anti-electro-magnetic system instead of typical frame and develops one turn canceling coil structure to reduce delaying time. Several parallel cells generate field up to 23.81 mG controlled by MPU (micro processor unit). This system decreases the power-line inducing filed below 0.3 mG.
出处 《Journal of Energy and Power Engineering》 2012年第7期1163-1169,共7页 能源与动力工程(美国大卫英文)
关键词 Extremely low frequency power-line current CMOS foundry passive shielding actives shielding hybrid shielding. 光刻系统 纳米技术 扫描电子显微镜 透射电子显微镜 Fab 极低频磁场 线圈传感器 线性电流放大器
  • 相关文献

参考文献15

  • 1K. Yamazaki, K. Kato, K. Ashiho, T. Uda, K. Fujiwara, N. Takahashi, et al., Active shielding suitable for electron-beam lithography systems, IEEE Transactions on Magnetics 39 (5) (2003) 3229-3231. 被引量:1
  • 2SEMI E33-94, Pecification for Semi-Conductor Manufacturing Facility Electromagnetic Compatibility, Semi-Conductor Equipment and Materials International, Mountanin View, CA, 1992, 1994. 被引量:1
  • 3M. Roccella, F. Lucca, R. Roccella, A. Pizzuto, G. Ramogida, A. Portone, et al., Analysis of active and passive magnetic field reduction systems (MFRS) of the ITER NBI,Fusion Engineering and Design 82 (2007) 709-715. 被引量:1
  • 4J.A. Montoya, Electromagnetic compatibility in semiconductor manufacturing, in: IEEE Technical Applications Conference and Workshops Northcon 95, Oct. 10-12, 1995, pp. 162-166. 被引量:1
  • 5M. Reta-Hemandez, G.G. Karady, Attenuation of low frequency magnetic fields using active shielding, Electric Power Systems Research 45 (1998) 57-63. 被引量:1
  • 6A.H. Firester, Design of square Helmholtz coil systems, Rev. Sci. Instrum. 37 (9) (1966) 1264-1265. 被引量:1
  • 7S.M. Rubens, Cube-surface coil for producing a uniform magnetic field, Rev. Sci. Instrum. 16 (9) (1945) 243-245. 被引量:1
  • 8V.O. Kelha, J.M. Pukki, R.S. Peltonen, A.J. Penttinen, R.J.Ilmoniemi, J.J. Heino, Design, construction and performance of a large-volume magnetic shield, IEEE Trans. Magn. 18 (1) (1982) 260-270. 被引量:1
  • 9R. Grisenti, A. Zecca, Design data for a triple square coil system, Rev. Sci. Instrum. 52 (7) (1981) 1097-1099. 被引量:1
  • 10P. Spillantinia, M. Casolinob, M. Durante, R.M. Mellind, G. Reitz, L. Rossi, et al., Shielding from cosmic radiation for interplanetary missions: Active and passive methods, Radiation Measurements 42 (2007) 14-23. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部