摘要
算子T∈B(H)称作有单值扩张性质,若对任意一个开集U■C,满足方程(T-λI)f(λ)=0(λ∈U)的唯一的解析函数为零函数.显然,当int σ_p(T)=时,T有单值扩张性质,其中σ_p(T)为T的点谱.本文给出了渐近纠缠算子单值扩张性质的稳定性的等价条件,同时研究了2×2上三角算子矩阵的单值扩张性质的稳定性.
An operator T∈B(H) is said to have the single-valued extension property, if for every open set U■C,the only analytic solution f:U→X of the equation (T -λI)f(λ) = 0 for all λ∈U is zero function on U.Clearly the point spectrum of any operator which has empty interior must have the single-valued extension property. In this paper,we investigate the stability of the single-valued extension property under compact perturbations for the Asymptotic Intertwining operator.Also,we characterize 2×2 upper triangular operator matrices for which the single valued extension property is stable under compact perturbations.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2012年第5期919-928,共10页
Acta Mathematica Sinica:Chinese Series
基金
陕西师范大学中央高校基本科研业务费专项资金资助(GK200901015)
关键词
单值扩张性质
紧摄动
渐近纠缠算子
single-valued extension property
compact perturbations
asymptoticIntertwining operator