摘要
设f是图G的一个正常全染色.对任意x∈V(G),令C(x)表示与点x相关联的边的颜色以及点x的颜色所构成的集合.若对任意uv∈E(G),有C(u)≠C(v),则称.f是图G的一个邻点可区别全染色.对一个图G进行邻点可区别全染色所需的最少的颜色的数目称为G的邻点可区别全色数,记为Xat(G).用C_5∨K_t表示长为5的圈与t阶完全图的联图.讨论了C_5∨K_t的邻点可区别全色数.利用正多边形的对称性构造染色以及组合分析的方法,得到了当t是大于等于3的奇数以及t是偶数且2≤t≤22时,X_(at)(C_5 V K_t)=t+6,当t是偶数且t≥24时,X_(at)(C_5 V K_t)=t+7.
Let f be a proper total coloring of G. For each x ∈ V(G), let C(x) denote the set of all colors of the edhes incident with x and the color of x. If∨ uv ∈ E(G), we have C(u) ≠ C(v), then f is called an adjacent vertex distinguishing total coloring of G. The minimum number k for which there exists an adjacent vertex distinguishing total coloring of G using k colors is called the adjacent vertex distinguishing total chromatic number of G and denoted by XAt(G). Let C5∨ Kt be the join of the cycle Ca of order 5 and the complete graph Kt of order t. In this paper, we discuss adjacent-vertex-distinguishing total chromatic numbers of C5 V Kt. By using symmetry of regular polygons to construct coloring, and methods of combinatorial analysis, we obtained that for t is odd with t ≥ 3 or t is even with 2 ≤ t ≤22, we have Xat(C5 ∨ Kt) = t + 6; for t is even with t ≥ 24, we have Xat(C5 ∨ Kt) = t + 7.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第16期247-252,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(61163037,61163054)
宁夏自然基金(NZ1154)
宁夏大学科学研究基金((E):ndzr10-7)
西北师范大学“知识与科技创新工程”科研基金(nwnu-kjcxgc-03-61)
关键词
联图
全染色
邻点可区别全染色
邻点可区别全色数
the join of graphs
total coloring
adjacent-vertex-distinguishing total coloring
adjacent-vertex-distinguishing total chromatic number