期刊文献+

联合因子分析和稀疏表示在稳健性说话人确认中的应用 被引量:7

Robust speaker verification using sparse representation on joint factor analysis
下载PDF
导出
摘要 在说话人确认的任务中,为了解决信道失配问题,提高系统性能,引入了联合因子分析和稀疏表示算法。首先利用联合因子分析算法去除信道干扰,得到与信道无关的说话人因子,然后在稀疏表示算法中利用说话人因子构建过完备字典,求解稀疏最优化问题计算说话人得分。由于此方法有机结合了联合因子分析算法的信道鲁棒性和稀疏表示的鉴别性,使用此算法构建的系统在NIST SRE 2008电话训练、电话测试数据集上性能表现良好,相对于联合因子分析-支持向量机系统在性能上有竞争性,在原理上有互异性,系统融合更带来了最小检测代价指标上4.91%的性能提升。实验表明使用联合因子分析与稀疏表示进行说话人确认是可行的。 This paper introduced sparse representation on joint factor analysis to solve the channel mismatch problem and to improve system performance. This algorithm uses joint factor analysis to generate the speaker factors space and construct the over-complete dictionary to calculate speaker score by solving the optimization problem. The minimum detection cost function (minDCF) of the system with sparse representation on joint factor analysis gave good performance on NIST speaker recognition evaluation (SRE) 2008 telephone to telephone test corpus. Because the sparse representation algorithm and the support vector machine classification algorithm also have a good complementary, the fusion of JFA-SR and JFA-SVM can achieve 4.91% reduction in minDCF. The results of the experiments show that speaker verification using sparse representation on joint factor analysis is feasible and has a great future.
出处 《声学学报》 EI CSCD 北大核心 2012年第5期548-552,共5页 Acta Acustica
基金 国家科技支撑计划(2008BAI50B03) 国家自然科学基金(10925419,90920302,10874203,60875014)经费资助
关键词 因子分析 稀疏表示 稳健性 说话人确认 信道干扰 应用 最优化问题 支持向量机 Algorithms Multivariant analysis Speech recognition Support vector machines Telephone Telephone sets Telephone systems
  • 相关文献

参考文献15

  • 1Reynolds D A, Quatieri T F, Dunn R B. Speaker veri- fication using adapted Gaussian mixture models. Digital signal processing, 2000: 10(1-3): 19 41. 被引量:1
  • 2国雁萌,付强,颜永红.复杂噪声环境中的语音端点检测[J].声学学报,2006,31(6):549-554. 被引量:17
  • 3张建平,李明,索宏彬,杨琳,付强,颜永红.长时语音特征在说话人识别技术上的应用[J].声学学报,2010,35(2):267-269. 被引量:8
  • 4Kenny P, Boulianne G, Ouellet P, Dumouchel P. Joint fac- tor analysis versus eigenchannels in speaker recognition. IEEE Transactions on Audio Speech and Language Pro- cessing, 2007: 15(4): 1435 1447. 被引量:1
  • 5Kenny P, Boulianne G, Ouellet P, Dumouchel P. Speaker and session variability in GMM-based speaker verification. IEEE Transactions on Audio Speech and Language Pro- cessing, 2007: 15(4): 1448 1460. 被引量:1
  • 6Kenny P, Ouellet P, Dehak N, Gupta V, Dumouchel P. A study of interspeaker variability in speaker verification. IEEE Transactions on Audio Speech and Language Pro- cessing, 2008: 16(5): 980-988. 被引量:1
  • 7Naseem I, Togneri R, Bennamoun M. Sparse representation for speaker identification. In: Pattern Recognition (ICPR), 2010 20th International Conference on, 2010. 被引量:1
  • 8Kenny P, Boulianne G, Dumouchel P. Eigenvoice modeling with sparse training data. IEEE Transactions on Audio Speech and Language Processing, 2005: 13(3): 345-354. 被引量:1
  • 9Vogt, Sridharan R S. Explicit modelling of session vari- ability for speaker verification. Computer Speech and Lan- guage, 2008: 22(1): 17 38. 被引量:1
  • 10郭武,李轶杰,戴礼荣,王仁华.说话人识别中的因子分析以及空间拼接[J].自动化学报,2009,35(9):1193-1198. 被引量:14

二级参考文献46

  • 1栗学丽,丁慧,徐柏龄.基于熵函数的耳语音声韵分割法[J].声学学报,2005,30(1):69-75. 被引量:34
  • 2陈振标,徐波.基于子带能量特征的最优化语音端点检测算法研究[J].声学学报,2005,30(2):171-176. 被引量:22
  • 3Reynolds D A. Channel Robust Speaker Verification via Feature Mapping// Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Hongkong, China, 2003,Ⅱ: 53 -56. 被引量:1
  • 4Deng Jing, Zheng T F, Wu Wenhu. Session Variabihty Subspace Projection Based Model Compensation for Speaker Verification //Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, USA, 2007, Ⅳ: 47 - 50. 被引量:1
  • 5Kenny P, Ouellet P, Dehak N, et al. A Study of Inter-Speaker Variability in Speaker Verification. IEEE Trans on Audio, Speech and Language Processing, 2008, 16(5) : 980 -988. 被引量:1
  • 6Vogt R, Sridharan S. Experiments in Session Variability Modeling for Speaker Verification// Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse, France, 2006, Ⅰ : 897 -900. 被引量:1
  • 7Campbell W M, Sturim D E, Reynolds D A. Support Vector Machines Using GMM Supervectors for Speaker Verification. IEEE Signal Processing Letters, 2006, 13(5) : 308 -311. 被引量:1
  • 8Reynolds D A, Quatieri T F, Dunn R B. Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing, 2000, 10(1/2/3): 19-41. 被引量:1
  • 9Castaldo F, Colibro D, Dalmasso E, et al. Compensation of Nuisance Factors for Speaker and Language Recognition. IEEE Trans on Audio, Speech and Language Processing, 2007, 15 ( 7 ) : 1969 - 1975. 被引量:1
  • 10Kenny P, Boulianne G, Dumouchel P. Eigenvoice Modeling with Sparse Training Data. IEEE Trans on Speech and Audio Processing, 2005, 13(3) : 345 -354. 被引量:1

共引文献37

同被引文献97

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部