期刊文献+

结合粒子群算法优化归一割的图像阈值分割方法 被引量:2

Image threshold segmentation approach of normalized cut and particle swarm optimization algorithm
下载PDF
导出
摘要 为了快速得到图像分割的最佳阈值,依据图论知识,利用灰度级相似矩阵代替像素级权值矩阵,将归一化切割准则作为优化函数.利用粒子群优化算法代替穷举法优化归一化划分准则,提出粒子群算法优化归一割的图像阈值分割方法.实验表明在分割性能上有较大的提高,在分割速度上也有较大的改进,能够满足实时性要求. In order to get the optimal threshold in image segmentation quickly,based on the graph theory,gray-scale similar matrix takes the place of pixel-level weight matrix,normalized cut criterion is regarded as the optimization function.Using particle swarm optimization algorithm to find the best threshold in gray-scale space.Experiments show that the method is not only less computational costs,but also get a satisfactory segmentation result.The thresholds is more stable and consume less time greatly and better satisfies the request of real-time processing in image segmentation by using this new method.
作者 任爱红
出处 《西安工程大学学报》 CAS 2012年第3期337-341,共5页 Journal of Xi’an Polytechnic University
基金 陕西省教育厅科研计划项目(11JK0506) 宝鸡文理学院科研计划项目(YK1026)
关键词 阈值分割 归一化割 粒子群算法 图像分割 threshold segmentation normalized cut particle swarm algorithm image segmentation
  • 相关文献

参考文献9

  • 1OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transaction on System Man Cybernetic, 1979, SMC-9 : 62-6 6. 被引量:1
  • 2WONG A K C,SAHOO P K. A gray-level threshold selection method based on maximum entropy principle[J]. IEEE Trans, 1989, SMC-19 (4):866-871. 被引量:1
  • 3CHANDA B, MAJUMDER D D. A note on the use of gray-level co-occurrence matrix in threshold selection[J]. Signal Processing, 1988,15 (2): 149-167. 被引量:1
  • 4SHI J, MALIK J. Normalized cuts and image segmentation[J]. Proc IEEE CS Conf Computer Vision and Pattern Rec- ognition, 1997 (4): 731-737. 被引量:1
  • 5SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis Machine Intelli- gence, 2000,22 (8) : 888-905. 被引量:1
  • 6陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:56
  • 7KENNEDY J, EBERHART R. Particle swarm optimization[C]. Processings of IEEE International Conference on Neu- ral Networks. Piscataway: IEEE Service Center, 1995 : 1 942-1 948. 被引量:1
  • 8周喜虎,高兴宝.具有时间因子的粒子群优化算法[J].纺织高校基础科学学报,2011,24(2):303-308. 被引量:7
  • 9闫元元,高兴宝.一种改进的粒子群算法[J].纺织高校基础科学学报,2011,24(3):428-431. 被引量:4

二级参考文献35

  • 1陈炳瑞,冯夏庭.压缩搜索空间与速度范围粒子群优化算法[J].东北大学学报(自然科学版),2005,26(5):488-491. 被引量:20
  • 2梁科,夏定纯.对粒子群优化算法的几种改进方法[J].武汉科技学院学报,2006,19(7):44-47. 被引量:7
  • 3de Albuquerque M P,Esquef I A,Mello A R G.Image thresholding using Tsallis entropy.Pattern Recognition Letters,2004,25(10):1059-1065 被引量:1
  • 4Belkasim S,Ghazal A,Basir O A.Phase-based optimal image thresholding.Digital Signal Processing,2003,13(5):636-655 被引量:1
  • 5Saha P K,Udupa J K.Optimum image thresholding via class uncertainty and region homogeneity.IEEE Transactions on Pattern Analysis Machine Intelligence,2001,23 (7):689-706 被引量:1
  • 6Oh W,Lindquist B.Image thresholding by indicator kriging.IEEE Transactions on Pattern Analysis Machine Intelligence,1999,21(7):590-602 被引量:1
  • 7Wu Z Y,Leahy R.An optimal graph theoretic approach to data clustering:Theory and its application to image segmentation.IEEE Transactions on Pattern Analysis Machine Intelligence,1993,15(11):1101-1113 被引量:1
  • 8Sarkar S,Soundararajan P.Supervised learning of large perceptual organization:Graph spectral partitioning and learning automata.IEEE Transactions on Pattern Analysis Machine Intelligence,200,22(5):504-525 被引量:1
  • 9Shi J,Malik J.Normalized cuts and image segmentation.IEEE Transactions on Pattern Analysis Machine Intelligence,2000,22(8):888-905 被引量:1
  • 10Wang S,Siskind J M.Image segmentation with ratio cut.IEEE Transactions on Pattern Analysis Machine Intelligence,2003,25(6):675-690 被引量:1

共引文献62

同被引文献24

  • 1KEVIN M P. Biomimicry of bacterial foraging for distributed opti-mization and control[J].IEEE Control Systems Magazine,2002.52-67. 被引量:1
  • 2DASGUPTA A,DASGUPUTA S,DAS S. A synergy of differential evolution and bacterial foraging optimization.for global optimization[J].Neural Network Word,2007,(06):607-626. 被引量:1
  • 3KIM D H,ABRAHAM A,CHO J H. A hybrid genetic algorithm and bacterial foraging approach[J].Information Sciences,2007,(18):3918-3937. 被引量:1
  • 4BISWAS A,DASGUPTA S,DAS S. Synergy of PSO and bacterial foraging op-timization:A comparative study on numerical benchmarks[A].Salamanca,2007.255-263. 被引量:1
  • 5LIU Y,PASSINO K M,POLYCARPOU M. Stability analysis of m-dimensiona asynchronous swarms with a fixed communication topology[J].IEEE Transactions on Automatic Control,2003,(01):76-95. 被引量:1
  • 6DATTA T,MISRA I S,MANGARAJ B B. Improved adaptive bacteria foraging algorithm in optimization ofantenna array for faster convergence[J].Progress in Electromagnetics Research C,2008,(01):143-157. 被引量:1
  • 7CHEN H;ZHU Y;HU K.Self-adaptation in bacterial foraging optimization algorithm[A]福建厦门,20081026-1031. 被引量:1
  • 8WU C,ZHANG N,JIANG J. Improved bacterial foraging algorithms and their applications to job shop scheduling problems[A].Warsaw,Poland,2007.562-569. 被引量:1
  • 9梁艳春;吴春国;时小虎.群智能优化算法理论与应用[M]北京:科学出版社,2009. 被引量:1
  • 10马苗,梁建慧,郭敏.随机预言模型下可证适应性安全的门限FFS签名方案[J].西安电子科技大学学报,2011,38(6):152-158. 被引量:13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部