期刊文献+

L-M优化算法BP网络在刀具磨损量预测中的应用 被引量:12

Application of Improved L-M Optimization Algorithm BP Neural Network in Tool Wear Prediction
下载PDF
导出
摘要 在线刀具磨损量估算及其未来发展趋势预测对于指导现实生产有着十分重要的意义。提出基于L-M优化算法BP神经网络的刀具磨损量在线预测方法。对声发射信号进行小波包分解,得到32个不同频带内的信号,用于构造初始特征向量矩阵;对初始特征向量矩阵进行奇异值分解,计算奇异谱,将奇异谱做为刀具磨损的特征向量,利用神经网络在线预测刀具磨损量。试验结果表明:预测结果能准确地跟踪实际的刀具磨损曲线,并且L-M优化算法比其他改进算法迭代次数少,收敛速度快,精确度高。 Online tool wear estimation and future trends prediction have great significance in guiding the practical production. Online tool wear prediction method based on improved L-M optimizational algorithm BP neural network was proposed, By wavelet packet decomposition, the collected acoustic emission signals were decomposed into 32 signals with different frequency bands, which were used to construct the initial feature vector matrix. Then using initial feature vector matrix, the singular spectrum was calculated by sin- gular value decomposition. Feature vector constituted by the singular spectrum was used to realize tool flank wear VB value forecasting using BP neural network with L-M algorithm. The experimental results show that prediction result can accurately track the actual tool wear curve. The BP neural network based on the improved L-M optimizational algorithm has merits of fewer iterations, fast conver- gence and high accuracy.
作者 关山 聂鹏
出处 《机床与液压》 北大核心 2012年第15期22-26,共5页 Machine Tool & Hydraulics
基金 东北电力大学博士科研启动基金资助项目(BSJXM-201115)
关键词 刀具磨损量预测 L-M优化算法 BP神经网络 小波包分解 奇异值分解 Tool wear prediction L-M optimizational algorithm BP neural network Wavelet packet decomposition Singularvalue decomposition
  • 相关文献

参考文献10

  • 1LI Xiaoli. A Brief Review: Acoustic Emission Method for Tool Wear Monitoring during Turning [ J ]. International Journal of Machine Tools & Manufacture,2002,42:157 - 165. 被引量:1
  • 2TANSEL I, TRUJILLO M, NEDBOUYAN A, et al. Micro- end-milling--III. Wear Estimation and Tool Breakage Detection Using Acoustic Emission Signals [ J ]. International Journal of Machine Tools & Manufacture, 1998,38 ( 12 ) : 1449 - 1466. 被引量:1
  • 3MARINESCU Iulian, AXINTE Dragos A. A Critical Analy- sis of Effectiveness of Acoustic Emission Signals to Detect tool and Workpiece Malfunctions in Milling Operations[ J ]. International Journal of Machine Tools & Manufacture, 2008,48(10) :1148 - 1160. 被引量:1
  • 4高宏力..切削加工过程中刀具磨损的智能监测技术研究[D].西南交通大学,2005:
  • 5DIMLA D E JR, LISTER P M, LEIGHTON N J. Neural Net- work Solutions to the Tool Condition Monitoring Problem in Metal Cutting: A Critical Review of Methods [ J ]. Interna- tional Journal of Machine & Tools Manufacture, 1997,37 (a) .1219 -1241. 被引量:1
  • 6SICK Bernhard. On-line and Indirect Tool Wear Monitoring in Turning with Artificial Neural Networks: A Review of More than a Decade of Research [ J ]. Mechanical Systems and Signal Processing,2002,16:487 -546. 被引量:1
  • 7杨建国..小波分析及其工程应用[M],2005.
  • 8ALONSO F J, SALGADO D R. Analysis of the Structure of Vibration Signals for Tool Wear Detection[ J ]. Mechancial Systems and Signal Processing,2008,22:735 -748. 被引量:1
  • 9SALGADO D R, ALONSO F J. Tool Wear Detection in Turning Operations Using Singular Spectrum Analysis[ J]. Journal of Materials Processing Technology ,2006,171:451 - 458. 被引量:1
  • 10张德丰等编著..MATLAB神经网络应用设计[M].北京:机械工业出版社,2009:321.

同被引文献92

引证文献12

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部