摘要
将Banach空间中的关于向量测度的重要结果推广到局部凸空间.讨论局部凸分离空间的Lebesgue分解定理.即F:F→X是强可加向量测度,则在F上存在惟一的强可加X值的、相互奇异的向量测度Fc和Fs,使得F=Fc+Fs.
Several conclusion of vector measures valued in Banach space was promoted to locally convex space. The Lebesgue decomposition Theorem in separated locally convex space wes discussed. Then there exist unique strongly additive vector measures Fc and Fs,on to X such F=Fc+Fs.
出处
《纺织高校基础科学学报》
CAS
2012年第2期158-161,共4页
Basic Sciences Journal of Textile Universities
关键词
局部凸空间
向量测度
分解定理
locally convex space
vector measures
decomposition theorem