期刊文献+

一种超声蠕动微流体驱动模型的动力学研究

Dynamics Research of Ultrasonic Peristaltic Micro-fluid Driving Model
下载PDF
导出
摘要 提出了基于超声行波和体积置换原理的超声蠕动微流体驱动模型.阐述了模型的驱动原理;利用有限元模型进行模态分析,预测了振动模态的谐振频率;通过瞬态动力学分析和谐响应分析观察腔体移动情况,得到了模型的幅频响应特性.为准确进行流体驱动效果分析,在模型内部填充流体介质进行声固耦合分析,得到了各个模态的振型和频率.通过对B(0,5)模态进行流固耦合分析,得到了模型内流体的运动情况,流体域的最大前向速度为15.5mm/s,最大体积流量为13.3ml/min. Based on the principle of ultrasonic traveling wave and volume displacing mechanism, an ultrasonic peristaltic micro-fluid driving model was presented. Principle of the driving model was introduced and finite element model was developed to predict model inherent frequencies by modal analysis. Transient dynamics analysis and harmonic analysis were done to observe the chambers travelling. Its amplitude-frequency response characteristics were obtained. To analyze the fluid driving effect precisely, fluid was filled in the model to perform acoustic-structure coupling analysis to obtain vibration modes and inherent frequencies of the coupling model. Mode B (0,5)was selected to perform fluid-structure coupling analysis. Transient dynamics analysis was completed to analyze the fluid flow state. The results showed that the maximum velocity in driving direction was 15.5mm/s and the maximum volume rate was 13.3ml/min.
出处 《应用基础与工程科学学报》 EI CSCD 北大核心 2012年第4期684-692,共9页 Journal of Basic Science and Engineering
基金 国家自然科学基金项目(51075243) 山东省优秀中青年科学家基金(2004BS05006)
关键词 微流体 超声行波 模态分析 流固耦合分析 micro-fluid ultrasonic traveling wave modal analysis fluid-structure coupling analysis
  • 相关文献

参考文献15

  • 1冯焱颖,周兆英,叶雄英,汤扬华.微流体驱动与控制技术研究进展[J].力学进展,2002,32(1):1-16. 被引量:47
  • 2Nguyen N T, Huang X, Chuan T K. MEMS-micropumps : a review [ J ]. Journal of Fluids Engineering, 2002,124 ( 2 ) : 384-392. 被引量:1
  • 3Laser D J, Santiago J G. A review of micropumps [ J ]. Journal of Micromechanics and Microengineering, 2004,14 : 35-64. 被引量:1
  • 4Stemme E, Stemme G. A Valve-less diffuser/nozzle based fluid pump [ J ]. Sensors and Actuators A, 1993,39:159-167. 被引量:1
  • 5Laser D J. Design, fabrication and applications of silicon electroosmotic micropumps [ D ]. Ph D Dissertation, Stanford University, 2005. 被引量:1
  • 6Miyazaki S, Kawai T, Araragi M. A piezoelectric pump driven by a flexural progressive wave [ C ]. IEEE. Proc. of MEMS ( MEMS' 91 ), 1991:283-288. 被引量:1
  • 7Cohen Y B, Chang Z. Piezoelectrically actuated miniature peristaltic pump [ J]. SPIE ,2002,3992:669-676. 被引量:1
  • 8Nguyen N T, White R M. Design and optimization of an ultrasonic flexural plate wave micropump using numerical simulation [ J ]. Sensors and Actuators, 1999,77:229-236. 被引量:1
  • 9Lee D R, Loh B G. Smart cooling technology utilizing acoustic streaming [ J ]. IEEE Transactions on Computers and Packaging Technologies,2007,30 (4) : 691-699. 被引量:1
  • 10Philip Y P, Vamsee K P, Krishnendu C. Adaptive cooling of integrated circuits using digital microfluidics [ J ]. IEEE Transactions on Very Large Scale Integration Systems,2008,16(4) :50-55. 被引量:1

二级参考文献67

  • 1季叶,赵淳生.一种圆筒型非接触式超声电机[J].南京航空航天大学学报,2005,37(6):690-693. 被引量:10
  • 2江兴娥,魏守水.行波微流体驱动技术研究[J].微电机,2005,38(6):89-91. 被引量:6
  • 3[1]Gad-el-Hak Mohamed. The fluid mechanics of microdevices-The Freeman Scholar Lecture. Journal of Fluids Engineering. 1999, 121:5~33 被引量:1
  • 4[2]Ho C M, Tai Y C. Micro-Electro-Mechanical systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics,998, 30:579~612 被引量:1
  • 5[3]Freemantle M. Downsizing chemistry. C & EN, 1999, 77(8): 27~36 被引量:1
  • 6[4]Papautsky I, Brazzle J, Ameel T, Frazier A B. Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors and Actuators A: Physical, 1999, 73(1-2): 101~108 被引量:1
  • 7[5]Jiang X N, Huang X Y, Liu C Y, Zhou Z Y, Li Y, Yang Y. Micronozzle/diffuser flow and its application in micro valveless pumps. Sensors and Actuators A: Physical, 1998, 70(1-2): 81~87 被引量:1
  • 8[6]Pfahler J, Harley J C, Bau H, Zemel J N. Gas and liquid flow in small channels. ASME-DSC, 1991, 32:49~60 被引量:1
  • 9[7]Gau H, Herminghaus S, Lenz P, Lipowsky R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science, 1999, 283:46~49 被引量:1
  • 10[8]Grunze M. Driven liquids. Science, 1999, 283:41~42 被引量:1

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部