期刊文献+

基于相图-BP网络相结合的发动机转子系统故障诊断方法研究 被引量:2

Research on Fault Diagnosis Method of Aero-engine Rotor Based on Phase Plot and BP-net
下载PDF
导出
摘要 发动机故障诊断是飞机故障预测和健康管理的重要内容,为了充分利用发动机的相图特征对发动机转子系统进行故障诊断,提出了一种相图和神经网络相结合的发动机转子系统故障诊断方法;在分析不同状态下发动机的整机振动信号参数在不同范围随机变化导致相轨迹分布不同的基础上,提取发动机振动相图特征值,借助BP神经网络良好的状态分类功能,对发动机转子系统进行故障诊断;实践表明该方法能有效去除噪声对故障信息的干扰,诊断准确率较高,判别速度较快,具有一定的实用价值。 Fault diagnosis of airplane engine is one of the most important aspects of Prognostics and Health Management (PHM). In or- der to increase the accuracy of engine diagnosis by making full use of the characteristics of phase plot of the engine, a fault diagnosis method of engine rotor is brought forward, which is based on the combination of phase plot and neural network. At first the overall vibration signal parameter's random changes in different ranges are anglicized when the engine is in different state, which can lead to the different distribution of the phase trajectories, and then the eigenvalues of engine's vibration phase plot are extracted and classified by BP neural network. At last the result can be used in the diagnosis of the engine rotor system. Simulation shows that this method can not only effectively remove interfer- ence of noise on the fault information, but also have higher precision and faster speed.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第8期2055-2057,2060,共4页 Computer Measurement &Control
关键词 振动 相图 BP神经网络 故障诊断 vibration phase plot BP neural network fault diagnosis
  • 相关文献

参考文献10

二级参考文献21

  • 1陈大光,韩凤学,唐耿林.多状态气路分析法诊断发动机故障的分析[J].航空动力学报,1994,9(4):349-352. 被引量:34
  • 2李晓竹,尹玉萍,魏林.VB与MATLAB间的无缝集成及其在故障诊断中的应用[J].计算机与数字工程,2007,35(3):92-93. 被引量:6
  • 3BANDLER J W, SALAMA A E. Fault Diagnosis of Analogue Circuits [J]. Proceedings of the IEEE, 1985, 73 (8): 1279-1325. 被引量:1
  • 4邹彦,唐冬,宁志刚,等.DSP原理及其应用[M].北京:电子工业出版社,2005. 被引量:1
  • 5Comon P.Independent component analysis,a new conception[J].Signal Processing,1994,36:287~314 被引量:1
  • 6Bell A,Sejnowski T.Fast blind separation based on information theory[A].In:Proc.1995 Int.Symp.on Nonlinear Theory and Applications (NOLTA-95)[C],Las Vegas,USA,1995 被引量:1
  • 7Cardoso J F,Paris T.Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem[A].International Conference on Acoustics,Speech,and Signal Processing[C],1990,(5):2655~2658 被引量:1
  • 8Gaeta M,Lacoume J L.Sources separation without a priorknowledge:the maximum likelihood solution,5[A].European Signal Processing Conference[C],Barcelona Spain,1990 被引量:1
  • 9Karhunen J,Joutsensalo J.Representation and separation of signals using nonlinear PCA type learning[J].Neural Networks,1994,7:113~127 被引量:1
  • 10Hyvarinen P,et al.Independent Component Analysis[M].New York:2001 被引量:1

共引文献67

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部